
PlugSys OXBC Data Access Guide
featuring

• ODBC Connector
• DBF Extender

Data Access Guide Version 2.00 2001-03-22a
PlugSys OXBC Data Access Guide © 1998, 1999 PlugSys International LLC 1

Trademark Notice

MaxTM, JoinerTM, JoinerTM, Joiner 96TM, Joiner 97TM are trademarks of PlugSys
International LLC.

CodeBaseTM is a trademark of Sequiter Software.

dBASETM, dBASE III PlusTM, dBASE IVTM, Visual dBASETM are trademarks of Borland/

Inprise and dBASE Inc. ClipperTM, CA-Visual ObjectsTM and CA-ClipperTM are trademarks of

Computer Associates International. Internet Information ServerTM, MSDOSTM, WindowsTM,

Windows 95TM, Windows 98TM, Windows NTTM, Visual BasicTM, FoxProTM, Visual

FoxProTM, Front PageTM, Front Page ExpressTM, Front Page 2000TM, Visual InterdevTM,

Visual StudioTM and SQL ServerTM are trademarks of Microsoft Corporation. BlinkerTM is a

trademark of Blink Inc. DreamweaverTM is a trademark of Macromedia, Inc. HomeSiteTM is a

trademark of Allaire Corporation. Netscape Enterprise ServerTM and Netscape FastTrak

ServerTM and iPlanetTM are trademarks of the Netscape/AOL/Sun Alliance and iPlanet.

All trademarks for products discussed in this document and not named above are those of
their publisher.
2 © 1998, 1999 PlugSys International LLC PlugSys OXBC Data Access Guide

PlugSys OXBC Data Access Guide 1

Introduction 9
What is OXBC? ..10
Implementation Issues ..10

OXBC Driver Function Calls ...10

DBF Extender 11
Getting Started ...11
About The DBF Extender ..12

Data Sharing...12
Higher Performance and Fewer Limits ..12

About CodeBase..12
Supported File Formats...13

How CodeBase Works...14
Scenario 1: The CodeBase API: (Programming in C).....................................14
Scenario 2: Using CodeBase OXBC (Simple, Transparent)...........................15

The DBF Extender Files ..16
Implementation Constraints ...16

Indexes..16
Complexity of Expressions 16
User-Defined Functions In Index Key Expressions 17
Single Index File Implementations: Supported and Unsupported 17
Other Implementation Issues 17
Multiple Index File Handling 18
About Production Index Files 19
How To Generate A FoxPro Production .CDX For The First Time 20
If A Production CDX Is Deleted Or Omitted From A Copy 20
HEADER() 20

About Indexes ..21
A Quick Introduction (For Xbase Beginners) ..21
Comparing The Formats..21
Index Expressions ...23

Multiple Indexes Are Better ..23
Production Indexes & Conventional Indexes..24
© 1998, 1999 PlugSys International LLC 3

Production Indexes Are Automatically Updated...24
Creating Indexes ..24
Modifying Production File...25
Selecting A Tag In A Multiple Index File ..25

Record Navigation After Selecting a Tag 25
Indexes With Filtering Characteristics...26

Filter Expressions 26
Group Files: Making Clipper Indexes Emulate Multiple Index Files26

Creating Group Files 27
Creating Index Key Expressions That CodeBase Can Evaluate28

Operators..28
Numeric 28

Functions..29
Max Extension Functions ...31

CBAutoOpen() ..32
CBIndexDescend() ...33
CBLargeOn()...33
CBErrorCode()..34
CBErrorText(nErrorCode) ...34

CodeBase Data Size Specifications ..34
Field Types. ..36

Error Codes ..41
Disk Errors..41
DBF Errors..43
Index Errorss..43
Expression Evaluation Errors...44
Optimization Errors ...46
SET RELATION Errors ...46
Severe Errors ...47
Unsupported Feature Errors...47
Memo Errors...47
Communication Errors ..48
Miscellaneous Errors...49
Server Failure Errors ...49

The PlugSys ODBC Connector 51
Getting Started ...51
4 © 1998, 1999 PlugSys International LLC

What is ODBC? ..52
Universal Access: Implementation Guidelines ...52

About The ODBC Connector ..53
Supported Databases ..53

How The ODBC Connector Works ...53
Accessing The Data: A Step-By-Step Explanation ...54

Exploring the Virtual DBF (vDBF)...56
What Is A "Virtual DBF" (vDBF)?..56
Navigation In A vDBF ..56
How To Create A vDBF ..57
The USE Command Syntax For ODBC ..58

USE 58
Tips About vDBF Operations ..60

Create Views 60
Field Naming Rules In Virtual DBFs...61

Field Name Length 61
Unnamed Column In SELECT Query 61
Non-Alphanumeric Characters In Data Source 62

Implementation Issues ..62
Determining What Features Are Supported ..62
Unsupported RDBMS Data Types...63
Conflicting Data Types (Xbase, SQL, ODBC) ..63
DateTime Data Type ...64
NULL Values ...64

Null Values Are Not Acceptable For Routine Xbase Operations 64
Acceptable Contexts For NULL values 65
Using Null Values 65

A Virtual DBF Cannot Be Indexed ..66
Workarounds 66
Index-Related Commands Are Not Supported 66
Instead of Indexes: Wise Coding For vDBF’s 67

Invalid Operations With A Virtual DBF...68
Using BROWSE/dbedit() With A Virtual DBF...68
Testing For An "Empty" Virtual DBF..68
Sources Of USE Errors With DBTYPE ODBC..69

Testing for USE Errors 69
69

vDBF And Header-Related Functions ..69
© 1998, 1999 PlugSys International LLC 5

Workarounds 69
HEADER() 69

Fetching Behavior..70
Microsoft SQL Server ..70

Workaround 70
ODBC Syntax For Database Interoperability ...70

ODBC Escape Sequences...71
Date and Time Values 71
Outer Joins 72
SQL Functions 72
LIKE Clauses 72
SQL Procedures 73

Frequently Asked Questions ..73
More Resources...74

SQL..74
ODBC ..74

ODBC Connector Language Reference
75

General Language Constructs..76
USE..77
isnull() ...78
unnull()..79

SQL-Specific Language Constructs...81
SQLAutoCommit()..82
SQLCommit()..84
SQLConnect()...86
SQLDisconnect()..89
SQLError() ..91
SQLErrorMessage() ...93
SQLExec()...95
SQLFetchOnDemand() ..97
SQLFieldName() ...98
SQLFormat() ...100
SQLMaxVarLen() ..102
SQLNull() ..104
SQLRefresh()..106
6 © 1998, 1999 PlugSys International LLC

SQLRollback() ..109
SQLRowCount() ...111
SQLState() ..113
SQLStringConnect() ..120
© 1998, 1999 PlugSys International LLC 7

8 © 1998, 1999 PlugSys International LLC

Introduction
This chapter provides an overview of the PlugSys Data Access Guide.
Introduction
 9

What is OXBC?
Open XBase Connectivity (OXBC) is PlugSys’s strategic interface for accessing data in a
heterogeneous environment of relational and nonrelational database management systems
(DBMS’s).

The advantage of OXBC over other interfaces such as ODBC is that OXBC is specifically
designed to match Xbase language semantics. Thus, developers can use Xbase commands
to manipulate all kinds of data: DBF files, text files, SQL databases.

OXBC was designed as a layer of abstraction so that other drivers could "speak directly" with
the underlying data source. This allows PlugSys products to interact with drivers like the
ODBC Connector (to work in conjunction with ODBC drivers for SQL databases) and DBF
Extender (to work with data files in FoxPro, dBASE and Clipper formats).

OXBC is platform-independent. So you can depend on OXBC drivers for Win32 and Linux.

Implementation Issues

OXBC Driver Function Calls
Functions defined within OXBC drivers are only available after you load the driver. USE
SET DBTYPE TO to explicitly load a driver. This ensures that all driver-resident functions
will be available. Of course, these functions become unavailable when you unload the OXBC
driver.

This is especially useful when working with the ODBC Connector, when driver functions like
SQLConnect() have to be called before populating a virtual DBF with
USE <dbf> DBTYPE ODBC.
10 © 1998, 1999, 2000 PlugSys International LLC Introduction

DBF Extender
DBF Extender
Getting Started
The purpose of this chapter is to provide the details you will need to
plan application development when you access FoxPro, dBASE or
Clipper data files.
11

About The DBF Extender
The Max family of Xbase tools was conceived to simplify the development process. PlugSys
set a goal of providing access to popular Xbase data files without adding complexity.

The DBF Extender realizes this goal by employing classic Xbase commands to open and
maintain Xbase files beyond those handled by the native Max engine.

Data Sharing
The DBF Extender lets organizations run legacy applications under FoxPro, dBASE or
Clipper. Using the DBF Extender, your new Max applications and Max Server Pages share
the data using compatible locking.

Higher Performance and Fewer Limits
For applications where you are not restricted by the constraints of legacy applications, the
DBF Extender gives you access to larger file sizes, record sizes, etc. Using the FoxPro file
formats supported by the DBF Extender, you will obtain the best balance of performance and
capacity.

To give the DBF Extender maximum performance and reliability, PlugSys has teamed up with
Sequiter Software to bring CodeBase technology into the DBF Extender. (See About
CodeBase on page 12.)

About CodeBase
CodeBase is a high-speed Xbase-compatible database engine that's small, easy-to-use and
portable. It is available with programming interfaces for various languages. CodeBase
provides superb access to FoxPro/dBASE and Clipper database files.

CodeBase was developed by Sequiter Software. The technology has more than a decade of
solid service worldwide. CodeBase has won the praise of programmers, technical journals
and information technology managers.
12 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

PlugSys teamed up with Sequiter Software to bring CodeBase technology to Max.

NOTE: More information can be found on CodeBase products can be found at the Sequiter
Software web site. (http://www.sequiter.com)

Traditionally, development with CodeBase required a great deal of low-level calls to
specialized library functions. In How CodeBase Works (on page 14), we contrast the low-
level programming approach required to use the traditional CodeBase API with the
straightforward Xbase approach you can adopt with Max together with the DBF Extender.

NOTE: The DBF Extender is distributed and supported by PlugSys International. (http://
www.plugsys.com)

Supported File Formats
CodeBase can read and write to three distinct types of Xbase data file formats:

• FoxPro: CDX indexes, FoxPro memo files
• dBASE: MDX indexes, dBASE memo files
• Clipper: NTX indexes, DBT memo files

Applications using the DBF Extender can share data with other applications in FoxPro,
dBASE and Clipper. The locking mechanism is consistent with that of the database type
selected. (e.g. when your application selects FoxPro file access, you can share data files with
FoxPro applications.)

Because database handling differs among the supported file formats, you specify the
appropriate DBTYPE targeted for each of the supported formats.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC13

How CodeBase Works

Scenario 1: The CodeBase API: (Programming in C)

To use the CodeBase functionality with custom software development, developers must learn
the CodeBase API. This is used to interact with CodeBase and perform operations like
opening databases, indexes, reading records, obtaining field values, etc. None of this is
necessary in Max, thanks to PlugSys Open XBase Connectivy (OXBC).

This example in C shows how to open an Xbase DBF table using the CodeBase API:

NOTE: The CodeBase API is licensed by Sequiter Software. Please visit the Sequiter web
site at http://www.sequiter.com for information on licensing and availability.

#include "d4all.h"

CODE4 codeBase ;

DATA4 *OpenDatafile(void)
{

DATA4 *Datafile = 0 ;

Datafile = d4open(&codeBase, "TEST.DBF") ;

/* datafile is opened; datafile assigned a value */
return (Datafile) ;

}

void main(void)
{

DATA4 *data ;
code4init(&codeBase) ;
data = OpenDatafile() ;

/* data now has a valid address */

d4top(data) ;

code4close(&codeBase) ;
}

14 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Scenario 2: Using CodeBase OXBC (Simple, Transparent)

PlugSys Open Xbase Connectivity (OXBC) frees Max developers from learning the
CodeBase API. Max transparently handles CodeBase interaction in response to classic
Xbase commands like USE and CREATE.

• You specify the OXBC driver to be used when opening a DBF table. (Use DBTYPE
clauses to classic commands or SET DBTYPE.)

• Max maps and redirects all database-handling commands and functions to the specified
driver.

This example illustrates how to use the DBF Extender for FoxPro in Max:

The only change from your past Xbase experience is to specify the DBTYPE as FOXPRO,
DBASE or CLIPPER.

NOTE: Refer to Max OXBC documentation and the Max Language Reference for more
information about OXBC-related commands and functions available in Max.

USE customers ALIAS cust DBTYPE foxpro
GO TOP
DO WHILE ! EOF()

? cust->name
SKIP

ENDDO
CLOSE
DBF Extender © 1998, 1999, 2000 PlugSys International LLC15

The DBF Extender Files
The DBF Extender kit includes separate files for each Xbase implementation. The index file
extension embedded within the driver filename indicates the Xbase implementation:

• CBOXBC-CDX.DLL (win32) / cboxbc-cdx.so (Linux) – FoxPro files with CDX index
• CBOXBC-MDX.DLL (win32) / cboxbc-mdx.so (Linux) – dBASE files with MDX index
• CBOXBC-NTX.DLL (win32) / cboxbc-ntx.so (Linux) – Clipper files with NTX index

The DBTYPE clause available in Max language is used to specify which file format should be
used. Tipically, the developer uses the command DEFINE DBTYPE to define what DLL file
handles a specific DBTYPE.

Max already has three predefined DBTYPEs that map to the files above. So developers don’t
have to perform the DEFINE DBTYPE to use DBF Extenders.

Implementation Constraints

Indexes

Complexity of Expressions

Index key expressions are stored within index files. Therefore, this is a runtime operation. So
any expressions must be evaluated by the CodeBase driver and not by Max. CodeBase does
not include a full Xbase expression evaluator.

CodeBase has its own expression evaluator to support the common Xbase operators and a
selected list of Xbase functions.

NOTE: Before proceeding with a CodeBase OXBC application, be sure to certify your index
key expressions. This manual provides a full list of operators and functions which
CodeBase will recognize and process. (See Creating Index Key Expressions That
CodeBase Can Evaluate on page 28.)

NOTE: Although the Clipper .NTX is supported, we strongly recommend adopting a more
modern data format if this is possible within your application design. The multiple
index formats are more robust and lead to self-maintained indexes.
16 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

User-Defined Functions In Index Key Expressions

Because index expressions must be evaluated by the CodeBase engine, user-defined
functions (UDF’s) cannot be processed by the driver.

If you are accustomed to writing user defined functions as any part of a key expression, you
will have to make some design decisions: Can you create identical or similar functionality in
another way?

• Can you move filtering or mapping into the program code as the user navigates or in a
processing loop?

• Will SET FILTER TO perform acceptably at runtime?
• Will a more conventional Xbase expression perform the same data transformation as your

UDF?

Single Index File Implementations: Supported and Unsupported

The following format is supported by the DBF Extender:

• Clipper .NTX

NOTE: The DBF Extender creates Clipper .NTX filenames in upper case. This behavior
cannot be changed by you. Be certain when using a case-sensitive operating
system that you open the file using an upper case filename.

The following formats are not supported:

• dBASE .NDX
• FoxPro .IDX

Other Implementation Issues

The following subsections discuss specific issues about index files. For a fuller discussion,
see About Indexes on page 21.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC17

Multiple Index File Handling

These Xbase implementations are supported for multiple index files:

• FoxPro CDX
• dBASE MDX)

Applications using the TAG clause (in USE and SET ORDER) are handled by the DBF
Extender. The ORDER clause will also work appropriately when referring to an index "tag".

NOTE: Because a multiple index file can contain a large number of indexes, it is unlikely
that any given table would require more index expressions than can be contained in
a production index.
18 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

About Production Index Files

A production index file is a multiple index file with the same structure and rules as any other
multiple index file. But there is one important distinction. You create it with the same root
filename as the DBF file with which the index is associated. (Example: In the case of
customers.dbf and customers.cdx, the latter file is a production index.)

The DBF Extender automatically opens and updates all indexes within the production index
file associated with the DBF:

• Your application issues a USE command on a DBTYPE that supports multiple index files.
• CodeBase looks in the same directory for a multiple index file with the same root filename.

This would be the production index file.
• If such a file is located, CodeBase opens that production index file.
• All subsequent updates to the DBF file will result in automatic updates to relevant indexes

within this production multiple index file.

NOTE: Max supports one multiple index file per DBF table. This is a production index
file. If you make this your standard way of storing your indexes, you eliminate code
and maintenance problems. Production index files mean you no longer need to
explicitly "open" indexes when users update the DBF.

NOTE: Create a well-behaved heterogeneous environment using the DBF Extender. If
your Max application is sharing data with other Xbase tools, you have a very
compelling reason to rely on production indexes. Each application may need only a
subset of the indexes. And it does not have to "know" about other indexes used by
other applications. Having a production index ensures that each application can
update all relevant indexes without knowing about indexes used by other
applications. (And this works equally well whether you are working only with Max or
a combination of Max applications and other Xbase tools.)

For more information, Production Indexes & Conventional Indexes on page 24.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC19

How To Generate A FoxPro Production .CDX For The First Time
• Open the DBF file you want to index in exclusive mode.

If A Production CDX Is Deleted Or Omitted From A Copy

Once you create a CDX file, the DBF header contains a link to the related production CDX
file. If you manually remove (delete) the CDX file, the DBF Extender will fail to open the DBF
file. If this happens to you, you have to use a tool that can alter the DBF header. This is
necessary to remove the reference to the now deleted CDX file.

HEADER()

header() returns 0 when used with OXBC drivers that do not support it. The DBF Extender
does not support header().
20 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

About Indexes

A Quick Introduction (For Xbase Beginners)
The purpose of an index is to order data records in purposeful ways. One approach is to
physically sort records in your data files. But this is inefficient. It requirescontinually shuffling
records as users interact with the data by updating or inserting. And sorting only permits you
to maintain a single sequence of records.

Indexes permit you to leave the data records in their original order within the data table. The
sorted orderings are instead stored in a separate file called an index file. When you create an
index file, you are effectively sorting the data file. Index files are efficiently maintained and
you can have an unlimited number of sorted orderings continually available.

Comparing The Formats
Each index file can contain one or more sorted orderings. These sorted orderings are
identified by a tag. That is, each index file tag corresponds to a single sorted ordering.
CodeBase supports three types of index files. Their attributes and differences are described
below:

File
Format

Compatibility Number of
Tags
(Index
Keys)

Production
Indexes

Index
Filtering

Descending
Order?

.MDX dBASE IV 1-47 Yes Yes Yes

.CDX FoxPro 2.x
FoxPro 3.x

1-47 Yes Yes Yes

.NTX Clipper 1 with
descend()
function
DBF Extender © 1998, 1999, 2000 PlugSys International LLC21

The difference between indexes and tags are illustrated below:
22 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Index Expressions
An index expression is an Xbase expression that is used to determine the index key for each
record. An index expression must evaluate to a value of one of the following types: Numeric,
Character, or Date types. When you are using .CDX (FoxPro) indexes, you can also index on
Logical expressions. (See Creating Index Key Expressions That CodeBase Can Evaluate on
page 28.)

The most commonly used index expression is a field name. For example, the index
expression for the PRO_TAG tag in Figure 5.2 is "PRODUCT". When this expression is
evaluated for record number 6, the value of the field PRODUCT is returned; for record
number 6, this value is "Foobar ". To put it simply, tag PRO_TAG is ordered by the contents in
field PRODUCT.

Other common index expressions involve generating tags based on two or more fields. This
is known as a compound index key. For example, if we assume that field PRO_ID is also a
character field, we can base a tag ordering with the following index expression:
PRODUCT + PRO_ID. This produces an index key consisting of the PRODUCT field
concatenated with the PRO_ID field. For record number 6, the resulting index key is "Foobar
1046".

A large group of Xbase functions are also permitted.(See Creating Index Key Expressions
That CodeBase Can Evaluate on page 28.) If we wanted to base a tag on the PRODUCT field,
but remain case insensitive, we can use UPPER() to convert the index key to upper case. In
this case the index expression would be UPPER(PRODUCT).

Multiple Indexes Are Better
In Max, Clipper, dBASE II and dBASE III Plus index files must be manually or
programmatically opened each and every time the data file is updated or put into control. This
leaves the possibility that you might forget to open an index file when needed. The result is
that the index loses synchronization with the .DBF.

dBASE IV and FoxPro use multiple index files (with more than one index expression (tag) in a
file). Additionally these implementations suport production index files. (Where the database
engine automatically opens the multiple index file when you open the data file.)
DBF Extender © 1998, 1999, 2000 PlugSys International LLC23

Production Indexes & Conventional Indexes
Creating an index file is similar to creating a data file; in fact you can even create both at the
same time. The DBF Extender for Max supports these types of index files:

• Multiple production index file- a multiple index file that is opened automatically when its
associated data file is opened. A data file can have only one production index. This is a
multiple index file it must have the same root name as the DBF file:
USE customer && this automatically opens:

&& if dBASE- customer.mdx
&& if FoxPro - customer.cdx

• Single index file- A data file can have an unlimited number of these non-production
indexes. To use these indexes, you must explicitly open them along with the DBF file (with
the USE command) or later using the SET INDEX TO command.

Production Indexes Are Automatically Updated
CodeBase automatically updates all open indexes for the data file as long as you rely on
production index files. When a record is added, modified, or deleted, the appropriate tag
entries for all of the open index tags are modified automatically. This is true whether
CodeBase has automatically opened a production index, whether your program has explicitly
opened a non-production multiple index file or you are using a conventional single index file.

Once the index file is open, CodeBase handles all of the key manipulation in the background,
letting you concentrate on application programming.

Creating Indexes
USE mytable DBTYPE
INDEX on name TAG name
INDEX on country TAG country
INDEX on recnum TAG myrecnum
...

SET ORDER TO name
...
24 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Modifying Production File
If you want to remove or change individual index tags once you have created a multiple index
file:

• Close down any applications that could potentially use the DBF and multiple index file.
• Physically delete the multiple index files.
• Then use the CBAutoOpen() function to turn off automatic opening of the production

index.
• Then write code to generate the new tags for the newly regenerated multiple index file.

Selecting A Tag In A Multiple Index File
Initially a data file does not have a selected tag and is therefore in natural order. Natural order
is the order in which the records were added to the data file. When you want to use a
particular sort ordering, select a tag using SET ORDER TO:

SET ORDER TO [TAG] product_code

NOTE: TAG is an optional clause.

NOTE: The TAG clause is not valid for use with SET INDEX TO.

Record Navigation After Selecting a Tag

Once a tag is selected, the behavior of navigation commands change. For each of these
commands, the behavior is as if the table were in the physical order of the index now in effect:

• GO TOP- first record in indexed order
• GO BOTTOM- last record in indexed order
• SKIP- next record in indexed order
DBF Extender © 1998, 1999, 2000 PlugSys International LLC25

Indexes With Filtering Characteristics
You can create filter indexes to constrain records to a subset of the entire table. The subset is
created using conditional expressions in the INDEX command’s FOR clause. Only records
that evaluate to .T. will appear in that tag. A tag filter is created when the tag is created.

NOTE: CodeBase cannot evaluate user defined functions at runtime. Be sure to use
expressions and functions that CodeBase can evaluate. (See Creating Index Key
Expressions That CodeBase Can Evaluate on page 28.)

Filter Expressions

A filter expression is an Xbase expression that returns a Logical result. This is used as a tag
filter. The expression is evaluated for each record as its tag entry is updated. If the filter
expression evaluates to true, an entry for that record is included in the tag. If it evaluates to
false, that record's tag entry is omitted from the tag:.

Group Files: Making Clipper Indexes Emulate
Multiple Index Files
In Clipper, .NTX index files must be manually opened each and every time the data file is
updated or put into control. This leaves the change that you might forget to open an index file
and put an index out of synchronization with the .DBF. dBASE IV and FoxPro use compound
index files (more than one tag in a file) and production index files (automatically opens when
data file opens) to avoid these problems.
26 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

CodeBase has introduced group files in order to compensate for this limitation of the .NTX file
format. A group file allows you to use the same function calls when using .NTX index files as
you would when using .CDX and .MDX index files.

This is accomplished by emulating production indexes and multiple tags per index file.

Creating Group Files

Use a text editor to create a group file definition for existing index files.

• Name the file with the same root name (before the dot) as the related .DBF file. Give it an
extension of .CGP.

• Then enter the names of the index files (without an extension) you want Max to open when
the DBF is opened.

• Enter one index filename per line with a carriage return after each index filename.

GROUP FILE: PRODUCTS.CGP

PRO_TAG
P_NUM_TAG

NOTE: Group files are a CodeBase-specific feature. They must be manually created by
you. Index files generated with Clipper will not automatically have group files. Either
access the .NTX group files directly or create your own group files as described
above.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC27

Creating Index Key Expressions
That CodeBase Can Evaluate
The CodeBase expression evaluator implements a core set of common Xbase operators and
library functions. Please consult this list to confirm whether your index key expressions can
be properly interpreted by the DBF Extender.

Operators

Numeric

Character

Relational

+ Addition

- Subtraction

* Multiplication

/ Division

+ Concatenation

- Concatenation (removing intervening spaces)

= Equal to

<> Not equal to

Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

$ Containing
28 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Logical

Functions
The following functions are supported by CodeBase. Notes are provided only when an
implementation presents differences from Max or other common Xbase tools.

.NOT. Not

.AND. And

.OR. Or

alltrim()

ascend() ASCEND() accepts all types of parameters, except complex
numeric expressions. ASCEND() converts all types into a
Character type in ascending order. In the case of numeric types,
the conversion is done so that the sorting will work correctly
even if negative values are present.

NOTE: This function is not supported by dBASE, FoxPro or Clipper.
Either create a UDF in those products or reserve the use of
this function for Max-only applications.

chr()
DBF Extender © 1998, 1999, 2000 PlugSys International LLC29

ctod()

date()

day()

descend() DESCEND() accepts any type of parameter, except complex
numeric expressions. DESCEND() converts all types into a
character type in descending order.

For example, the following expression would produce a reverse
order sort on the field ORD_DATE followed by normal sub-sort on
COMPANY.
e.g. DESCEND(ORD_DATE) + COMPANY

Also see ascend().

NOTE: This function is not supported by dBASE or FoxPro. Either
create a UDF in those products or reserve the use of this
function for Max-only applications.

NOTE: This function is compatible with Clipper, only if the parameter
is a Character type.

deleted()

dtoc()

dtos()

iif()

left()

ltrim()

month()

reccount()

recno()
30 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Max Extension Functions
OXBC drivers may carry Max Extension Functions to provide specific services not completely
covered by the driver's implementation. PlugSys provides the functions described below to
add functionality to the CodeBase driver.

NOTE: If you intend to open datafiles of more than one DBTYPE in the same application,
please be aware of the following:

- There are separate drivers for each DBTYPE.
- The DBF Extender does not close down the previous driver for a given DBTYPE
when another DBTYPE has been opened.
- This means that the Max Extension Functions from the previously opened
DBTYPE remain in memory when additional ones are opened.
- When functions have the same name the one loaded first is the one that gets
excuted if called.
-Under most circumstances, this does not pose a problem. But if you call
CBErrorCode(), you must be aware that you are calling the implementation
from the first DBTYPE driver’s extension functions.

right()

stod()

str()

substr()

time()

trim()

upper()

val()

year()
DBF Extender © 1998, 1999, 2000 PlugSys International LLC31

CBAutoOpen()
CBAutoOpen(newState)

CBAutoOpen() is used to control how the DBF Extender opens production indexes (CDX,
MDX). By default, production indexes are automatically opened when you open the
associated DBF file (equivalent to CBAutoOpen = .T.). The status of CBAutoOpen()
can be changed at any time.

Arguments:

newState: a logical value (.T. or .F.) indicating the new state.

Return Value

The function returns the current state. If you call the function to set the state, this function
returns the previous state.

Remarks

This function resides in the DBF Extender. To be available to the application, the driver must
be loaded. The command SET DBTYPE TO FOXPRO/DBASE/CLIPPER should be used to
automatically load the DBF Extender and make the CBxxxx() functions available at runtime.

NOTE: If a production index (CDX/MDX) was erased, corrupted or is not available for any
other reason, the USE command will typically fail. Disabling CBAutoOpen()
bypasses this problem by allowing an application to open only the DBF file.

NOTE: Turn off CBAutoOpen() whenenver you need to recreate a production index file.

Default: The default value for CBAutoOpen is TRUE.

Example:

// Load DBF Extender to make CBxxx() functions available
SET DBTYPE TO FOXPRO
erase "customers.cdx" // Delete the production file that will
be reacreated
CBAutoOpen(.F.) // Disabling CBAutoOpen, or the USE command
will fail as

// the production index customers.CDX has been
erased
use customers // Opening only the DBF file
index on NAME tag NAME // Now creating the production index
customers.cdx
32 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

CBIndexDescend()
CBINDEXDESCEND([descend_on_off])

This function controls how index keys are sorted (ascending or descending) when indexes
are created by the DBF Extender. Default setting is OFF (indexes are created with keys in
ascending order).

Return value

The function returns the current status (.F. = keys are sorted in ascending order / .T. = keys
are sorted in descending order). If you call the function with a setting parameter, the function
changes the status and returns the previous setting.

Remarks

This setting only takes effect when indexes (or index tags) are created. To change the sort
order, you must call this function and regenerate the index. The sort order flag is stored in the
index file whenever the entire index is generated with INDEX ON.

Example

set DBTYPE to FOXPRO
use customers
// Creating an index tag with keys in descending order
SaveStatus := CBIndexDescend(.T.)
index on DT_REGISTR tag dt_registr
// Restoring the default setting
NewStatus := CBIndexDescend(SaveStatus)

CBLargeOn()
• Enables large file support.

Once enabled, large file support remains enabled for the duration of the application’s
operation. (It can not be turned off without restarting the application.) This function must be
used before any CodeBase-managed data files are opened.

NOTE: Large file support is not a standard mode of operation. Keep this in mind if you
need to share data with other Xbase products. CodeBase will use an incompatible
locking algorithm. This means that all applications that are accessing the same
files are using the same locking algorithm. If multiple applications share the same
files but use different locking algorithms, the database files can become corrupt.
Use sensible precautions if you accept the tradeoff of large file support.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC33

CBErrorCode()
Use this function for debugging or monitoring purposes.

Returns the current error code. (See Error Codes on page 41.)

• 0 = no error condition.
• Values less than zero represent errors.
• Occasionally, a function may set this member to a positive value, indicating a non-error

condition.

CBErrorText(nErrorCode)
Use this function for debugging or monitoring purposes.

• Returns the message corresponding to the error code. (See Error Codes on page 41.)

CodeBase Data Size Specifications
NOTE: *Some CodeBase limits exceed those of FoxPro, dBASE or Clipper. It is possible to

be within CodeBase limits but lose compatibility with other products. (See
CBLargeOn() on page 33.)

DBF size 1 Gigabyte

(*8,589,934,590 Gigabytes with large file support)

Index file size 4 GB*

Memo file size 131,072 Gbyte

Memo entry size 4,294,967,296 - 100 = 4,294,967,196 bytes (approx. 4
GB)

Character field width 65517 bytes*

NOTE: Be sure you understand the maximum field
width if database compatiblity matters to you.
Use 254 byte maximum width for FoxPro or
dBASE compatibility or 32767 byte maximum
for Clipper compatibility.(See CBLargeOn() on
page 33.)
34 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Float field 19

Numeric field • 20 FoxPro

• 20 dBASE IV

• 19 Clipper

Maximum Number of fields 2046*

NOTE: Be sure you understand the maximum number
of fields if database compatiblity matters to
you. Use 128 fields maximum for dBASE
compatibility or 1024 fields maximum for
Clipper compatibility. (See CBLargeOn() on
page 33.)

Record size 2 Gbytes* (if you use large file size features)

NOTE: Be sure you understand the maximum record
size if database compatiblity matters to you.
Use a maximum of 128 bytes for dBASE
compatibility or 1022 bytes for Clipper
compatibility. (See CBLargeOn() on page 33.)

Tags per index • Unlimited FoxPro

• 47 dBASE IV

• 1 Clipper (actually a classic NTX file)

Index key expression size • 240 bytes: FoxPro
• 102 bytes: dBASE IV
• 338 bytes: Clipper
DBF Extender © 1998, 1999, 2000 PlugSys International LLC35

Field Types.
Field Type Structure

Code
Comments

Character C

Numeric N Numeric fields store numerical
information. It is stored internally in the
data file as a string of digits.

NOTE: This field is useful for
compatibility with dBASE and
FoxPro, which treat Floating
point and Numeric fields
differently.

NOTE: Use this field to store values
that will NOT be used in
floating point calculations.

Logical L

Date D

Memo M

Binary B Binary fields are handled in the same
way as Memo fields.

It stores binary information. The field
length is fixed at 10 bytes.

NOTE: Only available with dBASE IV
file compatibility.ient

Character (binary) Z This is the same as a Character field, but
can store binary information more
efficiently.

NOTE: Only available with Visual
FoxPro file compatibility.

Currency T The monetary data is stored in binary
form. The field length is fixed at 8 bytes.

NOTE: Only available with Visual
FoxPro file compatibility.
36 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Binary B Binary fields are handled in the same
way as Memo fields.

It stores binary information. The field
length is fixed at 10 bytes.

NOTE: Only available with dBASE IV
file compatibility.ient

Character (binary) Z This is the same as a Character field, but
can store binary information more
efficiently.

NOTE: Only available with Visual
FoxPro file compatibility.

Currency T The monetary data is stored in binary
form. The field length is fixed at 8 bytes.

NOTE: Only available with Visual
FoxPro file compatibility.

DateTime T The date and time is stored as binary
data. The field length is fixed at 8 bytes.

NOTE: Only available with Visual
FoxPro file compatibility.

Double D 64-bit double values are stored in binary
form. The field length is fixed at 8 bytes.

NOTE: Only available with Visual
FoxPro file compatibility.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC37

.

38 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Float F CodeBase treats this field as a Numeric
field.

NOTE: This field is useful for
compatibility with dBASE and
FoxPro, which treat Floating
point and Numeric fields
differently.

NOTE: Use this field to store values
that will be used in floating
point calculations.

General G General fields are handled in the same
way as Memo fields. It stores OLE
objects. The field length in the data file is
fixed at 4 bytes in Visual FoxPro tables,
otherwise it is fixed at 10 bytes.

NOTE: Only available with FoxPro file
compatibility.

Integer I Integer fields store 32-bit integers in
binary form. The field length is fixed at 4
bytes.

NOTE: Only available with Visual
FoxPro file compatibility. i
DBF Extender © 1998, 1999, 2000 PlugSys International LLC39

Memo (binary) X This is the same as a Memo field, but can
store binary information more efficiently.
The field length is fixed at 4 bytes.

NOTE: Only available with Visual
FoxPro file compatibility.

Unicode W Unicode fields store Unicode strings. The
field is padded with nulls. When creating
a table with this field type, remember to
specify the length as twice the required
number of Unicode characters, because
each Unicode character is stored in 2
bytes.

NOTE: This field type is only
compatible with CodeBase. It
will not be recognized by other
Xbase tools. When creating a
Unicode field in a FoxPro table,
CODE4 compatibility must be
set to 30.
40 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Error Codes

Disk Errors
Code Description

-10 Closing File- An error occurred while attempting to close a file.

-20 Creating File- This error could be caused by specifying an illegal file name,
attempting to create a file which is open, having a full directory, or by having a
disk problem. This error also results when the operating system doesn’t have
enough file handles.

NOTE: See -60 for more information.

-30 Determining File Length- An error occurred while attempting to determine the
length of a file. This error occurs when CodeBase runs out of valid file handles.

NOTE: See -63 for more information.

-40 Setting File Length- An error occurred while setting the length of a file. This
error occurs when an application does not have write access to the file or is out
of disk space.

-50 Locking File- An error occurred while trying to lock a file. Generally this error
occurs when lock enforcement is on and an attempt is made to modify an
unlocked record.

-60 Opening File- A general file failure occurred opening a file. This error may also
include any of the -6x errors if the selected compiler or operating system does
not allow for distinguishing between various file errors.

-61 Permission Error Opening File- Permission to open the file as specified was
denied. For example, another user may have the file opened exclusively.

-64 File Find Error Opening File- File was not found as specified.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC41

-70 Reading File- An error occurred while reading a file. This could be caused by
calling d4go with a nonexistent record number.

-80 Removing File- An error occurred while attempting to remove a file. This error
will occur when the file is opened by another user or the current process, and
an attempt is made to remove that file.

-90 Renaming File- An error occurred while renaming a file. This error can be
caused when the file name already exists.

-110 Unlocking File- An error occurred while unlocking part of a file.

-120 Writing to File- This error can occur when the disk is full.
42 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

DBF Errors

Index Errorss

Code Description

-200 Not a data file- File is not in expected datafile format. This error occurs when
attempting to open a file as a .DBF data file when the file is not actually a true
data file. If the file is a data file, its header and possibly its data is corrupted. It
will also occur when creating a data file with an invalid field type.

-210 Unrecognized Field Name- An internal function was called with a field name
not present in the data file.

-220 Unrecognized Field Type- A data field had an unrecognized field type. The
field type of each field is specified in the data file header.

-230 Record Length too Large- The total record length is too large.

-240 Record Append Attempt Past End of File

-250 Seeking- This error can occur if int d4seekDouble tries to do a seek on a non-
numeric tag.

Code Description

-300 Tag Entry Missing- A tag entry was not located. This error occurs when a key,
corresponding to a data file record, should be in a tag but is not.

-310 Not a Correct Index File- This error indicates that a file specified as an index
file is not a true index file. Some internal index file inconsistency was detected.

-330 Tag Name not Found- The tag name specified is not an actual tag name. Make
sure the name is correct and that the corresponding index file is open.

-340 Unique Key Error- An attempt was made to add a record or create an index file
which would have resulted in a duplicate tag key for a unique key tag.

-350 Tag information is invalid- Usually occurs when creating an index tag with
invalid information in the input TAG4INFO structure.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC43

Expression Evaluation Errors
Code Description

-400 Comma or Bracket Expected- A comma or a right bracket was expected but
there was none. For example, the expression "SUBSTR(A" would cause this
error because a comma would be expected after the ’A’.

-410 Expression not Complete- The expression was not complete. For example, the
expression "FIELD_A +" would not be complete because there should be
something else after the ’+ ’.

-420 Data File Name not Located- A data file name was specified but the data file
was not currently open. For example, if the expression was
"DATA->FIELD_NAME", but no currently opened data file has "DATA" as its
alias.

-422 IIF() Needs Parameters of Same Length- The second and third parameters of
dBASE function IIF() must resolve to exactly the same length. For example,
IIF(.T., "12", "123") would return this error because character expression "12"
is of length two and "123" is of length three.

-425 SUBSTR() and STR() need Constant Parameters- The second and third
parameters of functions SUBSTR() and STR() require constant parameters.

For example, SUBSTR("123", 1, 2) is fine; however,
SUBSTR("123", 1, FLD_NAME) is not because FLD_NAME is not a
constant.

-430 Number of Parameters is Wrong- The number of parameters specified in a
dBASE expression is wrong.

-440 Overflow while Evaluating Expression- The dBASE expression was too long or
complex for CodeBase to handle. Such an expression would be extremely
long and complex. The parsing algorithm limits the number of comparisons
made in a query. Thus, very long expressions can not be parsed.

-450 Right Bracket Missing- The dBASE expression is missing a right bracket.
Make sure the expression contains the same number of right as left brackets.

-460 Sub-expression Type is Wrong- The type of a sub-expression did not match
the type of an expression operator. For example, in the expression "33 .AND.
.F.", the "33" is of type numeric and the operator ".AND." needs logical
operands.
44 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

-470 Unrecognized Function- A specified function was not recognized. For
example, the expression SIMPLE(3) is not valid.

-480 Unrecognized Operator

A specified operator was not recognized. For

example, in the dBASE expression "3 } 7", the

character ’}’ is in a place where a dBASE operator

would be expected.

-490 Unrecognized Value- A character sequence was not recognized as a dBASE
constant, field name, or function.

-500 Unterminated String- According to dBASE expression syntax, a string constant
starts with a quote character and ends with the same quote character.
However, there was no ending quote character to match a starting quote
character.

-510 Expression Invalid for Tag- The expression is invalid for use within a tag. For
example, although expressions may refer to data aliases, tag expressions may
not.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC45

Optimization Errors

SET RELATION Errors

Code Description

-610 Optimization Error- A general CodeBase optimization error was discovered.

-620 Optimization Removal Error- An error occurred while suspending optimization.

-630 Optimization File Flushing Failure- An error occurred during the flushing of
optimized file information.

Code Description

-710 Relation Error- A general CodeBase relation error was discovered.

-720 Matching Slave Record Not Located- CodeBase could not locate the master
record’s corresponding slave record.

-730 Relation Referred to Does Not Exist or is Not Initialized- Referenced a non-
existent or improperly initialized relation. Possible cases are: non-initialized
memory or an invalid pointer has been passed to a relate module function, or
function calls have occurred in an invalid sequence (for example, relate4skip
may not be called unless relate4top has previously been called).
46 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Severe Errors

Unsupported Feature Errors

Memo Errors

Code Description

-910 Unexpected Information- CodeBase discovered an unexpected value in one of
its internal variables.

-920 Out of Memory- CodeBase tried to allocate some memory from the heap, in
order to complete a function call, but no memory was available. This usually
occurs during a database update process, which happens when a record is
appended, written or flushed to disk. During the update, if a new tag block is
required, CodeBase will attempt to allocate more memory. If the memory is not
available, CodeBase will return the "Out of Memory" error. If this error occurs
during the updating process, the index file will most likely become corrupt.

-930 Unexpected Parameter- A CodeBase function was passed an unexpected
parameter value. This can happen when the application programmer forgets to
initialize some pointers and thus null pointers are passed to a function.

-935 Null Input Parameter unexpected Unexpected parameter - null input.

-970 Data Structure Corrupt or not Initialized CodeBase internal structures have
been detected as invalid.

Code Description

-1090 Function unsupported- Operation generally not supported in this configuration.

-1095 Application/Library version mismatch- Version mismatch (e.g. client version
mismatches server version).

Code Description

-1110 Memo File Corrupt- A memo file or entry is corrupt.

-1120 Error Creating Memo File- For example, the CODE4.memSizeMemo is set to
an invalid value.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC47

Communication Errors
Code Description

-1300 Communication Information Corrupt- Connection information corrupt. In
general would indicate a network hardware/software failure of some sort. For
example, out of date device drivers may be being used on either a client or a
server machine.

-1310 Connection Failure- A connection failure. For example, a connection failed to
be established or got terminated abruptly by the network.

-1320 Socket Failure- A socket failure. All CodeBase software use sockets as their
basis for communications. This error indicates a failure in the socket layer of
the communications. For example, the selected communication protocol may
be unsupported on the given machine. Alternatively, an unsupported version of
the networking software may be being used (e.g. Windows Sockets 1.0 or
Novell 2.x).

-1330 Network Failure- A network error occurred. Some CodeBase communications
protocols are dependent on network stability. For example, if the local file-
server is shut-down, CodeBase may be unable to continue operations, and
may therefore fail with an error. Alternatively, a physical network error may be
detected (for example, if a network cable is physically cut or unplugged, thus
removing the physical connection of the computer from the network.)

-1340 Failure Loading Communication DLL- An attempt to load the specified
communication DLL has failed. Ensure that the requested DLL is accessible to
the application. This error may also occur if attempting to start a client or
server under Windows if Windows is unstable.

-1350 Network Timed Out- This error occurs whenever CodeBase has timed out after
timeout seconds have elapsed.

-1360 Communication Message Corrupt- A communication message error has been
detected. For example, a client may have not been able to properly send a
complete message to the server.

-1370 Communication Packet Length Mismatch- A packet length error has been
detected. Possibly the CodeBase client software mismatches the server
implementation.

-1380 Communication Packet Corrupt- A packet corruption has been detected.
Check e4corrupt for potential causes of this failure.

-1390 System-level Communications Error- This error would occur if the network
hardware failed or if the server disconnected from the client.
48 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

Miscellaneous Errors

Server Failure Errors

Code Description

-1400 CodeBase Capabilities Exceeded (system maxed out)- The physical
capabilities of CodeBase have been maxed out. For example, the maximum
allowable connections for a computer may have been exceeded by the server.
Often these errors can be solved by modifying system or network configuration
files which have placed arbitrary limits on the system. This error will also be
generated when the maximum number of users for the server is exceeded.

-1410 CodeBase in an Unacknowledged Error State- CodeBase failed due to being
in an error state already. Generally comes out as an error return code if a high-
level function is called after having disregarded a CodeBase error condition.

-1420 Name not Found error- The specified name was invalid or not found. For
example, d4index was called with a non-existent index alias.

-1430 Authorization Error (access denied)- The requested operation could not be
performed because the requester has insufficient authority to perform the
operation. For example, a user without creation privileges has made a call to
create.

Code Description

-2100 Server Failure- A client-server failure has occurred. In this case, the client
connection was probably also lost.

-2110 Server Configuration Failure- An error has been detected in the server
configuration file. The configuration file is only accessed when the server is
first started, so once the server is operational, this error cannot occur.

-2120 Catalog Failure- A catalog failure has occurred. For example, the catalog file
may exist but may be corrupt.
DBF Extender © 1998, 1999, 2000 PlugSys International LLC49

50 © 1998, 1999, 2000 PlugSys International LLC DBF Extender

The PlugSys ODBC Connector
The PlugSys ODBC Co
Getting Started
The purpose of this chapter is to give you direct implementation
information and the support commands and functions necessary to
make ODBC connections within PlugSys development products.

ODBC is primarily intended to provide access to SQL-oriented
database systems. If you are new to SQL and relational DBMS
engines (RDBMS’s), we strongly encourage that you learn more
about that world before attempting your first development effort. We
provide some suggested web links in More Resources on page 74.
nnector 51

What is ODBC?
Open Database Connectivity (OXBC) is an access method devised by Microsoft and built
upon the Call Level Interface work of the SQL Access Group. Its goal is to create a universal
way of accessing data sources. This makes application development more convenient and,
when implemented in a generic way, simplifies the process of migration from one database
management system to another.

NOTE: More background information on ODBC can be found within this manual. See
“More Resources” on page 74.

Universal Access: Implementation Guidelines
The success of any migration using ODBC depends heavily on how generic you have made
your implementation:

• Don’t rely on exotic data types when you create a new SQL database- make sure
whenever possible to rely on standard ODBC data types. (See ODBC Syntax For Database
Interoperability on page 70.) If possible, alter your database schema accordingly.

• ODBC can accept queries with proprietary SQL commands and functions if you use pass-
through strings with SQLExec(). But if you do this, you will have to rewrite your SQL
strings when you migrate to another DBMS.
52 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

About The ODBC Connector
The Max family of Xbase tools was conceived to simplify the development process. PlugSys
set a goal of providing access to popular Xbase data files without adding complexity. The
CodeBase OXBC driver realizes this goal by employing classic Xbase commands to open
and maintain Xbase files beyond those handled by the native Max engine.

The ODBC Connector is intended as an intelligent gateway between the PlugSys Xbase
engine and your database management system. You are responsible for obtaining and
licensing the correct ODBC driver(s) for your RDBMS. You license the
PlugSys ODBC Connector to complete the picture.

Supported Databases
The OBDC Connector was designed to interact with well-behaved ODBC drivers. PlugSys
urges you to obtain the most current version of the correct ODBC driver for your database.

How The ODBC Connector Works
Before you can work successfully with an RDBMS, it is important for you to understand how
the process works.

ODBC is an interface designed to provide database independence. ODBC uses the term
Data Source to refer to any database engine that can communicate with the ODBC Manager,
provide data and process requests.

The module that acts as a bridge between the ODBC Manager and the actual database
engine is called an ODBC driver.

• Before you can access any RDBMS (like MySQL or PostgreSQL), you must install an
ODBC driver for that data source.

• Once the ODBC driver module is copied to the machine, it is necessary to define a DSN
(Data Source Name) that your application will use to connect to that particular data source.

• Once you have the appropriate ODBC driver installed and a DSN defined, it is easy to
connect and interact with that particular data source:
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC53

Accessing The Data: A Step-By-Step Explanation
1. SELECT a work area as you would do in classic Xbase. . (This is an optional step. As in

classic Xbase you may omit it and the current work area is used.)

2. Invoke the PlugSys ODBC connector with SET DBTYPE TO ODBC. (This step is
necessary before accessing any tables or invoking USE. This step loads the ODBC
Connector and make its functions available. Making an ODBC Connection requires you to
make calls to its functions before you can actually "USE" the table.)

3. Establish a connection with the ODBC data source with SQLConnect(). (See page 86.)
(This ODBC connection will be available in the current work area.)

4. Test for the success of the ODBC connection by testing the return value from
SQLConnect(). (If there is a connection error, use SQLErrorMessage() to retrieve
information about the nature of the problem. The functions SQLState() and SQLError()
can also be used to retrieve information about the error.)

5. USE any table or view available to the connected ODBC data source. This step loads the
returned data set into a "virtual DBF" (VBDF). Or you may specify any valid SQL query
that will produce a result set. This fills a vDBF with USE...QUERY.

(See How To Create A vDBF (on page 57) and The USE Command Syntax For ODBC
(on page 58).)

6. You must test for success of the USE command. The USE command never generates an
error message upon failure. USED() determines if the vDBF has been successfully
opened. EOF() can be used to determine if the vDBF is empty (empty recordset). There
are two scenarios:

• USED() = .F.:
This indicates that USE failed. Use SQLErrorMessage() to obtain details about the error.
Common causes are invalid table/view names, or if you are using USE...QUERY, syntax
errors (invalid column names, etc) on the SQL query statement submitted.

• USED() = .T. and EOF() = .T.:
This indicates that the USE command was successful (the SQL query statement was
processed successfully) but it returned no rows (an empty recordset).

It is very common to try to open a vDBF with a narrow-scope query (like "NAME where
CustID = nnn") to check if a specific record already exists on a table. After a successful
USE...QUERY (when USED() returns .T.), you can check EOF() to determine whether
the record exists (was returned by the data source, thus EOF()=.F.) or if that record does
not exist on the table (in that case no records are returned by the data source, the vDBF is
empty, and consequently EOF() = .T.)
54 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

7. You may navigate and interact with the vDBF data. SQL data types are automatically
mapped to standard Xbase types.

NOTE: The current version of the ODBC Connector does not allow you to add or modify
data using the Xbase REPLACE command. Instead, you should use SQLExec() to
send INSERT, UPDATE or DELETE queries directly to the database engine.
SQLFormat() is extremely useful to convert Xbase data types to ODBC data types,
when creating SQL INSERT and UPDATE queries.

8. Your application is not automatically notified about data changes to the remote database.
These changes could be a result of a transaction initiated by your own application, other
applications, or activity at the database server. So you must explicitly fetch fresh data.
After performing SQLExec(), update your application’s own data buffer with
SQLRefresh(). (See page 106.).

9. Keep the ODBC connection open for any further activity within the application.

10.Any open ODBC connections will be closed when the application or web connection is
terminated. (If you explicitly want to close a SQL connection, use SQLDisconnect().)

For further documentation on the language supporting the ODBC Connector (including
example code), see ODBC Connector Language Reference on page 75.

PlugSys has aimed to make ODBC data access as natural as possible to Xbase developers.
But there are some differences you should be aware of. For further information, see
Implementation Issues on page 62.
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC55

Exploring the Virtual DBF (vDBF)

What Is A "Virtual DBF" (vDBF)?
• A Virtual DBF (vDBF) is a memory image of data representing the results of a SQL

SELECT query.
• This vDBF behaves as if it were a physical Xbase DBF data table. You can refer to
alias->fieldname the same way you would do with a local physical DBF file.

• You can apply the classic physical navigation commands to a vDBF. (SKIP, GOTO,
GO BOTTOM, GO TOP). (There are some limitations. For further information, see
Implementation Issues on page 62.)

• When you invoke USE in an ODBC work area, the RDBMS is queried and the result set
populates the work area. We build the vDBF header and field descriptors. (See The USE
Command Syntax For ODBC on page 58.)

• When you perform an Xbase record positioning instruction (such as GOTO or SKIP), the
ODBC Connector will try to point to the requested record (or, in SQL terminology, the next
row).

If this record is already in memory (i.e. the row has already been fetched and data mapped to
Xbase format), that data is made instantly available. Otherwise, the desired record is fetched
from the result set. The fetching behavior is set using SQLFetchOnDemand(). (See page
97.)

Navigation In A vDBF
• Xbase indexes are not understood by a vDBF. You cannot index or use SEEK.
• Use a loop with SKIP and IF ... ELSE blocks.
• You can alsp use LOCATE and CONTINUE if your data set is likely to be small.
56 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

How To Create A vDBF
If you know Xbase, you know almost everything you need to create a vDBF. You retrieve the
data and populate the vDBF with the classic USE command. (See Accessing The Data: A
Step-By-Step Explanation (on page 54) for a stepwise overview of the full ODBC access
model. Also see The USE Command Syntax For ODBC on page 58.)

Here are some of the rules:

• If you don’t specify a QUERY or ALIAS clause:
USE productlist DBTYPE ODBC
the ODBC Connector will access the ODBC connection in the current workarea seeking a
table or view with the name productlist. If such an entity exists, the ODBC Connector
will submit the default query:
SELECT * FROM productlist
As in classic Xbase, the ALIAS is automatically inherited from the tablename:
productlist.

• To populate the vDBF with a subset of the source table, view or join, use a query:
USE myfriends ;
QUERY "SELECT lname, fname FROM friends WHERE type = "FRIEND"

NOTE: Functions defined within OXBC drivers are only available after you load the
driver. USE SET DBTYPE TO to explicitly load a driver before attempting to
populate a virtual DBF. This ensures that all driver-resident functions will be
available. Of course, these functions become unavailable when you unload the
OXBC driver.

Call SQLConnect() before populating a virtual DBF with
USE <dbf> DBTYPE ODBC.
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC57

The USE Command Syntax For ODBC

USE
• opens a classic DBF data table, its associated memo file and its associated indexes. (This

accesses native Max DBF files or, with the CodeBase OXBC driver, can open FoxPro,
dBASE and Clipper files.)

• passes a SQL SELECT statement to an ODBC data source and opens a virtual DBF in the
specified work area. (Requires PlugSys ODBC Connector.)

NOTE: *This is designed to document how USE works when accessing ODBC SQL data
sources in conjunction with the PlugSys ODBC Connector. Please see the Max
Language Reference for baseline documentation of this command and its Xbase-
oriented behavior.

Platforms:
!DOS32/W
!Linux

USE [data_table]
[IN work_area_number / NEW]
[ALIAS database_alias]
[INDEX idxfile_1 [KEY Index_Exp1 [FOR
ForCond_1] [UNIQUE]]
[, idxfile_2 [KEY Index_Exp2 [FOR ForCond_2]
[UNIQUE]]
[, ...]]]
[DBTYPE <datasource_type>]
[ORDER index_tag]
[QUERY sql_query]
[NOUPDATE]
[EXCLUSIVE]
[SHARED]

!OXBC: ODBC *USE <tablename|viewname> [QUERY <cSqlQuery>]
[IN <nWorkArea>]
[ALIAS <cAlias>] [DBTYPE <dbtype>]
58 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

Remarks:
• The QUERY clause is only valid when applied to ODBC connections with SQL databases.
• Whenever you know you will require a join for common operations, consider creating a

SQL view at the database. This is handy for frequent reuse. Do this also insulates your
application code from any changes to the database schema. (As long as the viewname
returns the same columnnames and data types, you can make significant changes to the
underlying SQL database schema while preserving the code in your application.) And
most database engines provide improved performance. Once you have created the join,
your application can open the connection and call the
viewname: USE ViewName DBTYPE ODBC.

Examples:
* This exploits default behaviors and values:
* ODBC Connector opens view or table called “productlist”
* and assigns the default alias “productlist”
* query is omitted: connector submits “SELECT * from productlist”
USE ProductList DBTYPE ODBC // Alias is "PRODUCTLIST"

// Use default SELECT * query
// "SELECT * from ProductList"

* Submit an explicit query
USE ProductList QUERY [SELECT ProdID, PriceUSD FROM Products] in 2

// uses default alias “productlist”
// returned set has 2 columns
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC59

Tips About vDBF Operations

Create Views
• Whenever you know you will require a join for common operations, consider creating a

SQL view at the database. This is handy for frequent reuse because you only have to
remember the viewname. And most database engines provide improved performance.

The strongest argument for creating a view is that this insulates your application code from
subsequent changes to the database schema. (As long as the viewname returns the same
columnnames and data types, you can make significant changes to the underlying SQL
database schema while preserving the code in your application.)

Once you have created the join, your application can open the connection and call the
viewname: USE ViewName DBTYPE ODBC.

• Number of Records in the result set- This information is not instantly available if you have
chosen to turn on SQLFetchOnDemand(). Getting the count requires the ODBC
Connector to request all result rows. If SQLFetchOnDemand() is off, the app must
request the value of LASTREC() or RECCOUNT(), the entire result set will be
downloaded and all records will be read.

• If SQLFetchOnDemand() is off, GO BOTTOM will force the ODBC Connector to retrieve
all remaining rows and populate the vDBF.

• vDBF tables support NULL values. However, the native PlugSys DBF file format does not
support NULL values. If you use COPY to create a physical version of the table, make sure
the target database is capable of storing NULLs. (PlugSys offers the CodeBase OXBC
driver to support NULL storage in some DBF file formats.)
60 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

Field Naming Rules In Virtual DBFs
The virtual DBF is designed to mimic the character of an open physical Xbase datafile.
Therefore the vDBF follows the same naming rules. But ODBC data sources may contain
field names that violate Xbase naming rules. This section describes how the ODBC
Connector handles field names when building a vDBF.

NOTE: This section explains how the ODBC connector handles conflicting naming rules in
the data source and Xbase. However, there is a simple precaution giving you
complete control over field names in the vDBF. PlugSys strongly recommends that
you make use of the AS clause in your SQL SELECT statements. This step will help
you whenever:

- you are including an expression in the SELECT list (rather than a field)
- there may be a duplicated column name in the result set
- the data source has a field name with non-alphanumeric characters
- the data source has a long fieldname
- the data source has ambiguous or unfriendly names.

Field Name Length

Virtual DBF field name lengths are more generous than the maximums for standard Xbase
data files. The VDBF field name length may be up to 100 characters. Field names exceeding
that limit will be truncated to the 100-character maximum.

NOTE: If you are a longtime Xbase developer, you may be tempted by the luxury of super-
long field names. But bear the impacts in mind; should you decide to copy a vDBF
to a local physical DBF, the field names must conform to the rules of the target DBF
file.

• Use SQLFieldName() to retrieve the column name as returned by the ODBC data source.

Unnamed Column In SELECT Query

Most likely cause of this condition: You have specified an expression in your SELECT
statement (rather than a column name) and you omitted an AS clause (which would specify a
column name alias).

• The ODBC Connector will automatically generate the name "FIELD999", where 999 is a
zero-padded value representing the field’s order as listed in the SELECT query (Example:
FIELD003).
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC61

Non-Alphanumeric Characters In Data Source

All non-alphabetic and non-numeric characters are converted to underscores. (Example: a
column named "State and/or Province" will be available in Xbase as the field
state_and_or_province).

Implementation Issues
This section of the documentation focuses on specific implementation issues of concern to
developers integrating Xbase development with SQL databases and using ODBC as the
middleware to achieve this goal.

Determining What Features Are Supported
Because the PlugSys development tools cover multiple platforms and environments, you’ll
sometimes want to confirm whether a particular feature is supported for your target
environment. Here is how to determine the answer:

• If this is not a feature exclusively intended for the ODBC Connector, check the
Max Language Reference for that language item and look for the Platforms checkboxes.

• First check for the operating system indicators. If the box is unchecked for your targeted
operating system, then this feature is not available (this includes cases where you may be
running MSP under a web server under that particular operating system.)

If this is a feature exclusively intended for ODBC, confirm whether the language feature is
being used appropriately. Issues to watch for include:

• Are you attempting to use a NULL value? Is this supported by the language feature?
• Is the data type supported by the language feature?
• Are you submitting the proper datatype or correctly formatted value to the ODBC

Connector?
62 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

Unsupported RDBMS Data Types
• The ODBC Connector supports all ODBC data types. However, some ODBC drivers may

not support all of these. This is rarely an issue if you are using the most popular database
drivers, but it sometimes occurs when the driver developer expects customers to perform
custom data transformations in C or C++.

• The PlugSys ODBC Connector can only handle standard ODBC data types.
• If you submit a non-ODBC data type through the ODBC connector, the PlugSys database

engine will fail to open the Virtual DBF. SQLErrorMessage() returns the message: "Field
Type Not Supported: <fieldname>".

Conflicting Data Types (Xbase, SQL, ODBC)
The world of cross-platform/cross-database development can seem overwhelming to
newcomers. The next paragraph asks you to apply common sense to your development
effort. If you do, your effort will be much smoother.

SQL databases address a broader range of specialized data types than those available
within classic Xbase. Before submitting a value to an Xbase function or to the ODBC
connector, confirm whether that value conforms to a valid data type in the target context
(Xbase, SQL, ODBC, your RDBMS implementation). This is equally true whether you wish to
pass the value back from Xbase to SQL or you wish to format the value for presentation to
the user.

• Start with the Max Language Reference to familiarize yourself with the baseline language
feaures.

• Determine whether there is an appropriate conversion function for the job. (If this involves
interaction with a SQL data type, consult the ODBC Connector Language Reference (on
page 75).)

• See “ODBC Syntax For Database Interoperability” on page 70.
• See “NULL Values” on page 64.
• See “DateTime Data Type” on page 64.
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC63

DateTime Data Type
The DateTime data type is a common SQL data type that stores dates or times, or both.

These functions help process datetime values:

• ctot()returns a datetime value from a validly formatted character string.
• datetime() retrieves the system date and time as a datetime value.
• dtot() converts an Xbase date value to a valid SQL datetime value.
• hour() extracts the hour portion from a datetime value.
• minute() extracts the minutes portion from a datetime value.
• sec() extracts the seconds portion from a datetime value.
• SQLFormat() (on page 100)- returns a properly formatted ODBC value for use in SQL

statements.

NULL Values
SQL databases are able to distinguish between an "empty value" and the non-entry of a
value into a field. When a field has had no value entered, it is considered NULL regardless of
its data type.

• Max introduces a .NULL. compile-time constant for assignment to variables or for
submission to the data source.

• SQLNull() (on page 104)
• isnull() tests whether a variable or field contains a null value.
• unnull() returns the appropriate empty value of a vDBF field according to its data type

when it contains a NULL value .

Null Values Are Not Acceptable For Routine Xbase Operations

Null values come from external data sources and are not a native Xbase data type.

• Xbase environment commands and functions will generate errors If they receive NULL
values. Operations with null values are also not allowed.

• Null values in expressions generate runtime error messages.
64 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

Acceptable Contexts For NULL values

Null values are supported in the following operations:

• Variable assignment: You may create memory variables with Null data. This can be done
by assigning a variable from a field or from the .NULL. constant.

• Submission to the data source.
• Data Output Operations: Max will display .NULL. as the content of Null variables/fields in

all data output operations.
• Empty(): returns .T. for variables/fields containing NULL
• Type(): returns the actual data type
• IsNull(): allows for inspection and detection of variables/fields containing NULL data
• UnNull(var): returns a guaranteed non-null value for the field/variable passed

Using Null Values

If you connect to a data source with nullable fields, it is your responsibility to handle these
fields properly while in the Xbase environment.

Null values in expressions usually propagate. So if you request a column like
Upper(NAME+LASTNAME) and one of the fields is NULL, the result will be NULL. So
check for NULL values and handle them in your applications.

• isnull() detects which fields contain Null values.
• unnull() turns a null value vDBF field into the Xbase empty value for its data type.
• SQLNull() specifies how the ODBC Connector will return NULL values.

Classic Xbase applications do not know or care about NULL values. But as you’ve see in
Null Values Are Not Acceptable For Routine Xbase Operations (on page 64), these will
be hazardous if you do not handle them. Use unnull() to replace a NULL value with an
empty value of the same data type. (See the Max Language Reference.)

The ODBC Connector exposes a function to perform this operation automatically upon data
retrieval. SQLNull(.F.) will cause all Null data fields to return default empty values instead of
NULL.

.NULL. is a compile-time constant that can be used to assign NULL values to variables.

Var = .null.
? Var // Outputs ".NULL."
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC65

A Virtual DBF Cannot Be Indexed
Because a virtual DBF is not a physical entity, you cannot create index files from a vDBF.

Workarounds
• If you want to work with a physical version of the result set, use COPY to create a local

DBF file and then index the newly created file using conventional methods.

• USE LOCATE and CONTINUE.

Index-Related Commands Are Not Supported

Any command or function that relies on index files to perform a function is not supported in a
work area containing a vDBF. These are notable examples:

• SET SOFTSEEK
• SEEK
• INDEX ON
• SET INDEX TO
66 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

Instead of Indexes: Wise Coding For vDBF’s

When you are using SQL databases, you should use a SQL SELECT statement to retrieve a
set of valid records. (Even to retrieve one record.)

Approach 1

• Use the SQL ORDER BY clause (and also GROUP BY if you want) if you want to work
with a sorted result set.

• Then use Xbase commands to navigate against the data in the sorted vDBF.

Approach 2

• Use the SQL SELECT statement to generate the result set into a vDBF.
• Use the Xbase COPY TO command to create a physical file.
• Open the newly create DBF file in a workarea.
• Index the newly created physical DBF file.
• Use SEEK.

We strongly recommend using Approach 1.

• With Approach 2, the larger the potential result set, the slower the response time as file
Input/Output consumes time.

• The SQL database is very good at retrieving data fast. Then you can quickly navigate the
VDBF to find subsets.

• If the result is a small enough set, the entire vDBF will be in memory. So, you can use
LOCATE and CONTINUE to move through the data if you want.

Here is one approach to filter down the rows in a vDBF for various conditions:

* select the virtual DBF workarea
DO WHILE !EOF()

... // if necessary change <condExpr>
IF <condExpr> // the filtering condition

...
ENDIF
SKIP

ENDDO
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC67

Invalid Operations With A Virtual DBF
• APPEND
• REPLACE
• PACK
• ZAP

Using BROWSE/dbedit() With A Virtual DBF
• Disable hotkeys that trigger invalid operations (such as appending, replacing, etc.)
• Make sure to keep the BROWSE/dbedit() interface in read only mode.

Testing For An "Empty" Virtual DBF
A VDBF is opened even if the result set yields no rows.To determine whether a query
returned rows into a vDBF, use:

• COUNT- returns 0 when the vDBF contains an empty result set.
• LASTREC()or RECCOUNT()- returns 0 when the vDBF contains an empty result set.
• EOF() and BOF()- Both of these are .T. when the vDBF contains an empty result set.
• You may also use the SQL count() function within a preliminary query. This will return one

row. (Then monitor the value of that column.) If the value is > 0, then issue the desired
query to retrieve the result set.

NOTE: COUNT and/or LASTREC()/RECCOUNT() should only be used when you can be
certain that the maximum number of result rows is relatively small. Large result sets
could require evaluating the full data set and impact performance.

Do not rely on:

• USED()
• SQLError()

to determine if the query returned rows. These functions are to test for error conditions rather
than empty result sets.
68 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

Sources Of USE Errors With DBTYPE ODBC
• Network connection lost
• Locking problems
• Error in SQL query syntax

Testing for USE Errors
• Be sure to include IF USED() immediately after USE to test for success or failure.
• In the case of error, use SQLError() to retrieve further information.

vDBF And Header-Related Functions
The Virtual DBF is not a physical file and does not perform in quite the same manner as a
classic Xbase DBF data table. The results will yield unreliable data or even generate errors.

• lastrec()/reccount()- This returns a valid numeric value indicating how many result rows
were returned by the ODBC Connector. However, calling this function requires ODBC to
fetch the entire result set. This could impact performance with large data sets. This
fetching action will happen regardless of whether you have turned on
SQLFetchOnDemand(). (See page 97.)

Workarounds

If you are requesting a nonstandard data type:

• exclude that field name or expression from the list of columns to be requested by the
SELECT statement

• change the expression or database schema so that all columns are defined with valid
ODBC datatypes

HEADER()

header() returns 0 when used with OXBC drivers that do not support it. This function is not
available to ODBC database connections.
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC69

Fetching Behavior
The ODBC Connector by default turns OFF SQLFetchOnDemand(). When this feature is
turned ON, the ODBC Connector retrieves data rows as needed (rather than loading the
entire dataset.)

If your database permits fetching subsets, you may want to experiment with performance by
turning this feature on. (See Microsoft SQL Server on page 70.)

Microsoft SQL Server
Microsoft SQL Server considers a fetch operation to be an uncompleted transaction. This
could prevent updates to the record set.

Workaround

Allow the ODBC driver to retrieve all result rows in one fetch. Do not turn on
SQLFetchOnDemand(). (The default for SQLFetchOnDemand() is .F.)

ODBC Syntax For Database
Interoperability
Although the core syntax of SQL is common to most databases, every database vendor has
unique syntax for the more advanced operations. Be aware of this and you can make the best
choices for your own circumstances:

• Are you strongly committed to a particular database platform? If the answer is yes, then
feel free to use the SQL syntax you already know.

• Are you uncertain or want to leave your options open to migrate later? Then try to use the
most common subset of SQL. When you cannot stay within that subset, learn to use
ODBC syntax. If you do this, you will be able to migrate because the ODBC driver will
correctly interpret that syntax and present it to the current database in the syntax it
understands.

NOTE: A fuller discussion of this topic can be found at http://msdn.microsoft.com/
library/psdk/dasdk/odch5v1v.htm.
70 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

ODBC Escape Sequences
Use these to promote database independence or to submit Xbase data types to the
appropriate data type for your SQL database.

NOTE: Further information on ODBC may be found at . Escape sequences are explored at
http://msdn.microsoft.com/library/psdk/dasdk/odch34df.htm

Date and Time Values

The syntax for date/time escape sequence works like this:

{input-type 'value'}

where input-type is.

Examples Of Formatted

This is an example of an ODBC date escape sequence:

UPDATE Orders SET OpenDate={d '1995-01-15'} WHERE OrderID=1023

For simpler results, pass all the Xbase values to SQLFormat(). (See page 100.)

? SQLFormat(ctot("10:10:10")) // Result: {t 10:10:10}
? SQLFormat(ctot("10/10/00")) // Result: {d 1900-10-10}

• To ensure predictable results and to provide database interoperability, we recommend the
use of SQLFormat(). (See page 100.)

NOTE: Further information on date/time escape sequences can be found at http://
msdn.microsoft.com/library/psdk/dasdk/odch5wfn.htm and http://
msdn.microsoft.com/library/psdk/dasdk/odap4gfn.htm.

input-type (code) Data Format

Date (d) yyyy-mm-dd

Time (t) hh:mm:ss

Timestamp/DateTime (ts)
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC71

Outer Joins

Note the difference in native syntax for outer joins in Oracle and Microsoft SQL Server and
the database-independent equivalent for ODBC:

NOTE: Further discussion of escape sequences for outer joins may be found at http://
msdn.microsoft.com/library/psdk/dasdk/odch1c37.htm.

SQL Functions

SQL provides a set of functions for data transformation. A further discussion of the ODBC
escape sequences can be found at http://msdn.microsoft.com/library/psdk/dasdk/
odch90xf.htm.

LIKE Clauses

SQL provides the LIKE clause as a way of performing substring comparisons within a
WHERE search predicate. A further discussion of the ODBC escape sequence can be found
at http://msdn.microsoft.com/library/psdk/dasdk/odch478z.htm.

Oracle SELECT STUDENT.SSN, FNAME, LNAME, CCODE, GRADE
FROM STUDENT, GRADE
WHERE STUDENT.SSN = GRADE.SSN(+)

Microsoft SQL Server SELECT STUDENT.SSN, FNAME, LNAME, CCODE, GRADE
FROM STUDENT
LEFT OUTER JOIN GRADE
ON STUDENT.SSN = GRADE.SSN

ODBC (interoperable) SELECT STUDENT.SSN, FNAME, LNAME, CCODE, GRADE
FROM {oj STUDENT LEFT OUTER JOIN GRADE ON
STUDENT.SSN = GRADE.SSN}
72 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

SQL Procedures

Many SQL databases provide a facility for precompiling, storing and executing SQL
operations on demand. Stored procedures are common to the commercial databases. A
discussion of the ODBC escape sequences for these can be found at http://
msdn.microsoft.com/library/psdk/dasdk/odch7h4j.htm.

Frequently Asked Questions
Q: Let's say that I open an ODBC connection in work area 5 and then successfully load a

vDBF there. What happens if I open something else in that same work area? Is this the
same as issuing a SQLDisconnect()?

A: No, it is not the same thing. In your example, the first vDBF is closed, all related data
buffers are released. Then the new vDBF is opened using the existing ODBC
connection. (Please remember that re-opening connections is resource intensive. Read
documentation for SQLDisconnect(). (See page 89.)

Q: Is SQLRowCount() the same as lastrec()/reccount()?

A: SQLRowCount() is used only for SQL operations like INSERT and UPDATE that do
NOT return record sets. This is one way to determine whether the operation was
successful because the RDBMS typically indicates whether any rows were affected by
the operation. Don’t use SQLRowCount() for SELECT operations! The way to get the
count is to call lastrec()/reccount().

Q: Does a vDBF store NULL values coming from a SQL database?

A: vDBF tables support NULL values. Use SQLNull() to control the behavior.

Q: Can I store NULL values in a DBF data table?

• The native PlugSys DBF file format does not support NULL values.
• Some DBF implementations do support NULL values. It is possible to copy from a vDBF to

a physical DBF file. If you use COPY to create a physical version of the table, make sure
the target database is capable of storing NULLs. (PlugSys offers the CodeBase OXBC
driver to support NULL storage for the major DBF file formats.)
The PlugSys ODBC Connector © 1998, 1999, 2000 PlugSys International LLC73

More Resources

SQL
• http://sqlcourse.com/
• http://www.sqlcourse2.com/
• http://users.neca.com/ltruett/sql.html
• http://www.sql-zone.com/sites.asp
• http://www.cs.unibo.it/~ciaccia/COURSES/RESOURCES/SQLTutorial/sqlcont.htm
• http://www.dcs.napier.ac.uk/~andrew/gisq/

ODBC
• http://msdn.microsoft.com/library/psdk/dasdk/odin8w4s.htm
• http://www.microsoft.com/data/odbc/
• http://www.microsoft.com/data/doc.htm#odbc
• http://www.unixodbc.com
74 © 1998, 1999, 2000 PlugSys International LLC The PlugSys ODBC Connector

ODBC Connector Language Reference

This chapter provides an overview of functions relevant to ODBC operations using the
PlugSys ODBC Connector.
ODBC Connector Lang
uage Reference75

General Language Constructs
The following are commands and functions appearing in the Max Language Reference.
However they are of additional interest when used in accessing SQL databases.

NOTE: Be sure to consult the Max Language Reference for the most complete information
on these.
76 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

USE
USE
• opens a DBF data table, its associated memo file and its associated indexes.
• passes a SQL SELECT statement to an ODBC data source and opens a virtual DBF in the

specified work area. (Requires PlugSys ODBC Connector.)

NOTE: *This is designed to document how USE works when accessing ODBC SQL data
sources in conjunction with the PlugSys ODBC Connector. Please see the Max
Language Reference for baseline documentation of this command and its Xbase-
oriented behavior.

Platforms:
!DOS32/W
!Linux

USE [data_table]
[IN work_area_number / NEW]
[ALIAS database_alias]
[INDEX idxfile_1 [KEY Index_Exp1 [FOR
ForCond_1] [UNIQUE]]
[, idxfile_2 [KEY Index_Exp2 [FOR ForCond_2]
[UNIQUE]]
[, ...]]]
[DBTYPE <datasource_type>]
[ORDER index_tag]
[QUERY sql_query]
[NOUPDATE]
[EXCLUSIVE]
[SHARED]

!OXBC: ODBC *USE <tablename|viewname> [QUERY <cSqlQuery>]
[IN <nWorkArea>]
[ALIAS <cAlias>] [DBTYPE <dbtype>]
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC77

isnull()
isnull()
tests whether a variable or field contains a null value.

isnull(<VarField>)

Platforms:
! OXBC: ODBC

VarField
any variable name or field name

Return Value:

returns .T. if the variable/field contains a null value; otherwise returns .F.
78 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

unnull()
unnull()
returns the appropriate empty value of a variable or vDBF field according to its data type.

unnull(FieldVar)

Platforms:
! OXBC: ODBC

FieldVar
fieldname or variable name

Return Value:
• If the variable/field passed to UNNULL() contains a null, UNNULL() returns the

appropriate “empty value.”
• The default empty value is produced according to the type of the variable/field provided.
• If a variable was assigned with the .NULL. constant, UNNULL() returns .F.

Remarks:
• The QUERY clause is only valid when applied to ODBC connections with SQL databases.
• Whenever you know you will require a join for common operations, consider creating a

SQL view at the database. This is handy for frequent reuse. Do this also insulates your
application code from any changes to the database schema. (As long as the viewname
returns the same columnnames and data types, you can make significant changes to the
underlying SQL database schema while preserving the code in your application.) And
most database engines provide improved performance. Once you have created the join,
your application can open the connection and call the
viewname: USE ViewName DBTYPE ODBC.
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC79

unnull()
Examples:
* This exploits default behaviors and values:
* ODBC Connector opens view or table called “productlist”
* and assigns the default alias “productlist”
* query is omitted: connector submits “SELECT * from productlist”
USE ProductList DBTYPE ODBC // Alias is "PRODUCTLIST"

// Use default SELECT * query
// "SELECT * from ProductList"

* Submit an explicit query
USE ProductList QUERY [SELECT ProdID, PriceUSD FROM Products] in 2

// uses default alias “productlist”
// returned set has 2 columns

Also see:
80 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

unnull()
SQL-Specific Language Constructs
The following are relevant only when you are using the ODBC Connector. These language
elements are not available unless the ODBC Connector has been loaded.
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC81

SQLAutoCommit()
SQLAutoCommit()
used to retrieve or change the AutoCommit mode for an ODBC connection.

SQLAutoCommit(newState)

Platforms:
! OXBC: ODBC

newState
a logical value (.T. or .F.) indicating the new state of AutoCommit.

Return Value:

the current AutoCommit state. If the function is used to set a new state, it returns the previous
state.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• When AutoCommit mode is ON (default), each statement is committed immediately after it

is executed. When in manual-commit mode, the application must explicitly commit or roll
back transactions with SQLAutoCommit() or SQLRollback().

The default value for AutoCommit is ON.
82 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLAutoCommit()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector to make SQLxxx()
functions available
SQLAutoCommit(.F.) // Turning off AutoCommit mode:
Connected = SQLConnect("MS-SQLServer", "sa", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end

USE CUSTOMERS QUERY [SELECT ID, NAME, CITY, STATE from CUSTOMERS]

SQLExec([UPDATE CUSTOMERS SET name = 'new name' WHERE ID =
']+mID+['])
.
.
.
if TransactionCompleted

SQLCommit() // Commit transaction
else

SQLRollBack() // Roll back
end
.
.
.
close
SQLDisconnect()

Also see:
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC83

SQLCommit()
SQLCommit()
commits all transactions on the current work area.

SQLCommit()

Return Value:

The function returns .T. if successful or .F. upon failure.

Notes:

This function is only effective when SQLAutoCommit() is OFF.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• Use SQLError() and SQLErrorMessage() to retrieve information about the error upon

failure.
• The virtual DBF is a “snapshot” of the data at the time the last query was executed. Your

application is not notified about subsequent changes occur to the SQL database.
• When AutoCommit mode is OFF, the application must explicitly commit or roll back

transactions with SQLCommit() or SQLRollBack(). (The default value for
SQLAutoCommit() is ON.)
84 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLCommit()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector, make SQLxxx() funcs
available

SQLAutoCommit(.F.) // Turning off AutoCommit mode:

Connected = SQLConnect("MS-SQLServer", "sa", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end

USE CUSTOMERS QUERY [SELECT ID, NAME, CITY, STATE from CUSTOMERS]

SQLExec([UPDATE CUSTOMERS SET name = 'new name' WHERE ID =
']+mID+['])
.
.
.
if TransactionCompleted

SQLCommit() // Commit transaction
else

SQLRollBack() // Roll back
end
.
.
.
close
SQLDisconnect()

Also see:
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC85

SQLConnect()
SQLConnect()
establishes an ODBC connection with the specified ODBC data source name.

SQLConnect(DataSourceName [, UserID [, Password]])

Platforms:
! OXBC: ODBC

DataSourceName
is the ODBC data source as defined using an ODBC management tool.

UserID
If the data source requires authentication, supply a valid RDBMS user account id as a
string. (Optional)

Password
If the data source requires runtime authentication, supply a valid password for the
UserID as a string. (optional)

Return Value:

Returns returns .T. if the connection was successfully established or .F. if an error occurred.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• If the ODBC driver for this data source requires more parameters than provided for in the

above syntax, use SQLStringConnect() instead.
• Use SQLDisconnect() and SQLErrorMessage() to retrieve information about the error

upon failure.
• Before being able to connect to a data source, it is necessary to run an ODBC manager/

configuration utility to create and/or configure a data source.
• The Data Source Name (DSN) is the name of the ODBC connection to be used. An ODBC

data source contains all details about the connection.
• Data sources that describe connections with RDBMSs are capable of storing information

about the authentication method to be used. This may override the UserID and Password
parameters. If the data source is not properly configured, the connection will not work.
86 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLConnect()
Certain DBMS engines (such as Microsoft SQL Server) offer the option of logging in using
operating system authentication. If your application is running on a remote server and
particularly if you are running separate operating systems, it may be necessary to configure
the SQL server to use the native DBMS authentication instead.

SQLConnect() establishes a connection within the current work area. After the connection
has been successfully established, the application may open a virtual DBF with the USE
command, specifying the SQL SELECT query necessary to return the result table to be
mapped into a Virtual DBF.

SQLCommit() establishes a connection on the current work area. After the connection has
been successfully established, the application may open a virtual DBF with USE.

The connection with the ODBC data source is not terminated if the Virtual DBF is closed with
CLOSE or USE. Once the connection has been established, it remains available until you
issue a SQLDisconnect(). Establishing a connection demands more processing than
most other operations. So keep connections open as much as possible.

Call SQLDisconnect() only when you absolutely need to explicitly close a connection.

ODBC connections are automatically disconnected when an application (or web connection)
terminates, so it is not mandatory to call SQLDisconnect() in many cases.

Example:
SET DBTYPE TO ODBC // Load ODBC Connector, make SQLxxx() funcs
available

SELECT 10 // Choosing a work area
Connected = SQLConnect("SQLServer", "sa", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end
close
SQLDisconnect()

Also see:
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC87

SQLConnect()
88 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLDisconnect()
SQLDisconnect()
disconnects an ODBC connection in the current work area established previously with
SQLConnect().

SQLDisconnect()

Platforms:
! OXBC: ODBC

Return Value:

None

Remarks:

You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be
available to the application at runtime.

SQLCommit() establishes a connection on the current work area. After the connection has
been successfully established, the application may open a virtual DBF with USE.

The connection with the ODBC data source is not terminated if the Virtual DBF is closed with
CLOSE or USE. Once the connection has been established, it remains available until you
issue a SQLDisconnect(). Establishing a connection demands more processing than
most other operations. So keep connections open as much as possible.

Call SQLDisconnect() only when you absolutely need to explicitly close a connection.

ODBC connections are automatically disconnected when an application (or web connection)
terminates, so it is not mandatory to call SQLDisconnect() in many cases.
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC89

SQLDisconnect()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector, make SQLxxx() funcs
available

SELECT 10 // Choosing a work area
Connected = SQLConnect("SQLServer", "sa", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end

close
SQLDisconnect()

Also see:
90 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLError()
SQLError()
retrieves the ODBC error code from the last ODBC operation performed.

SQLError()

Platforms:
! OXBC: ODBC

Return Value:

Returns a status code indicating success or error, according to the following table:

-1 = Error

0 = Success

1 = Success with info (Warning)

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• Use SQLError() to determine if the last operation performed by the ODBC Connector

succeeded. Most operations return codes indicating success or failure. SQLError() can be
used concurrently to retrieve further information. Operations may succeed but generate
warning messages. SQLError() returns 1 indicating that the operation succeeded but
generated warning messages. Use SQLErrorMessage() to retrieve further information.

• Error values are always returned as negative numbers, so SQLError() >= 0 indicates that
the operation was successfully executed.
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC91

SQLError()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector, make SQLxxx() funcs
available

Connected = SQLConnect("SQLServer", "sa", "plugsys")

if SQLError() < 0
? "ERROR: Failed to connect to SQLServer data source!"
? "Error Description = " + SQLErrorMessage()
Quit

end

if SQLError() > 0
? "WARNING: Successfully connected to SQLServer"
? "But driver issued a warning: " + SQLErrorMessage()
wait "Press any key to proceed..."

end
.
.
.
close
SQLDisconnect()

Also see:
92 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLErrorMessage()
SQLErrorMessage()
retrieves the error string triggered by the last database operation through the ODBC
connector.

SQLErrorMessage()

Platforms:
! OXBC: ODBC

Return Value:

Returns one or more error messages separated by semi-colons (;)

Remarks:

You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be
available to the application at runtime.

When an operation fails, the ODBC Connector notes the original ODBC error code. This
value is returned by SQLDisconnect(). SQLErrorMessage() returns more detailed, user-
readable information about the error.
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC93

SQLErrorMessage()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector, make SQLxxx() funcs
available
Connected = SQLConnect("SQLServer", "sa", "plugsys")

if ! Connected
? "ERROR: Could not connect to SQLServer data source!"
?
? "ODBC State/Error Code = " | SQLError()
? "Error Description = " | SQLErrorMessage()
Quit

end

RecordSet = [SELECT NAME, CITY, STATE from CUSTOMERS]
USE &RecordSet alias CUST
.
.
.
select CUST
bResult = SQLExec([UPDATE CUSTOMERS set NAME = '] + mNewName + ['
WHERE NAME = '] + CUST->NAME + ['])
if !bResult

FatalError("Could not update customers table: ",
SQLErrorMessage())
end

? "Total Records Updated: " | SQLRowCount()
.
.
.

close
SQLDisconnect()

Also see:
94 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLExec()
SQLExec()
executes a SQL query in the current work area.

SQLExec(SQLStatement)

Platforms:
! OXBC: ODBC

SQLStatement
a string containing a valid SQL operation

Return Value

returns .T. if the SQL statement was successfully executed or .F. upon failure.

Notes:
• Do not use SQLExec() to submit statements that return result sets! Therefore SQL

SELECT statements are not allowed.. Submitted SQL SELECT statements with the Xbase
USE command. This produces a Virtual DBF for your application to access as needed.

• Do not use this function to invoke commit and rollback operations. Instead use
SQLCommit() and SQLRollback() or SQLAutoCommit().

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• A connection with an ODBC data source must have been successfully established with
SQLConnect() or SQLStringConnect() first or SQLExec() will fail.

• Call SQLRowCount() to determine the number of rows affected by the SQL statement
after execution.

• Use SQLError() and SQLErrorMessage() to retrieve information about errors.
• SQLRefresh() should be called immediately following SQLExec() to read any data

changes into the local data buffer.
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC95

SQLExec()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector, make SQLxxx() funcs
available

Connected = SQLConnect("SQLServer", "sa", "plugsys")
if ! Connected

FatalError("Could Not Connect to ODBC Data Source",
SQLErrorMessage())
end

RecordSet = [SELECT NAME, CITY, STATE from CUSTOMERS]
USE &RecordSet alias CUST
.
.
.
select CUST
bResult = SQLExec([UPDATE CUSTOMERS set NAME = '] + mNewName + ['
WHERE NAME = '] + CUST->NAME + ['])
if !bResult

FatalError("Could not update customers table: ",
SQLErrorMessage())
end

? "Total Records Updated: " | SQLRowCount()
.
.
.

close
SQLDisconnect()

Also see:
96 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLFetchOnDemand()
SQLFetchOnDemand()
specifies whether the ODBC connector will retrieve result rows as needed (or fetches the
entire data set when SQL SELECT is executed).

SQLFetchOnDemand(lAllowFlexibleFetching)
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC97

SQLFieldName()
SQLFieldName()
retrieves the original field/column name returned by the ODBC driver.

SQLFieldName(nFieldNumber)

Platforms:
! OXBC: ODBC

nFieldNumber
is a numeric expression of the column number in the sequence submitted to the ODBC
connector.

Return Value:

Returns the original field name (column name) returned by the ODBC driver.

Remarks:

You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be
available to the application at runtime.

Xbase semantics may differ from the ODBC data source field name conventions. And some
queries may not return names for columns. The ODBC Connector inspects column names
from the data source before mapping them into Virtual DBF field names. The field order is
preserved to guarantee correspondence between Xbase field names and the columns in the
query result set.
98 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLFieldName()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector, make SQLxxx() funcs
available
Connected = SQLConnect("SQLServer", "sa", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source: ",

SQLErrorMessage())
end

RecordSet = [SELECT NAME, CITY, STATE from CUSTOMERS]
USE &RecordSet alias CUST
nFields = afields()
declare FieldNames[nFields]
afields(FieldNames)

for n = 1 to nFields
? "Xbase field " + FieldNames[n] + " = SQL column " +

SQLFieldName(n)
next
close
SQLDisconnect()

Also see:
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC99

SQLFormat()
SQLFormat()
returns a properly formatted ODBC value for use in SQL statements.

SQLFormat(value)

Platforms:
! OXBC: ODBC

value
a character, date, datetime, numeric or logical value to be formatted.

Return Value:

a valid ODBC escape string appropriate to the input data format and data type.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.

SQLFormat() follows the ODBC standard for Date, Time and DateTime values, returning
values that are guaranteed valid for submission to any data source.

Formatting criteria:

• Character values are returned within single-quotes (')
• Numeric values are formatted with 6-digit precision.
• Logical values are formatted as 0 or 1
• Date and DateTime fields are formatted as ODBC Escape Sequences {t }, {d } or {ts } (See

ODBC Escape Sequences on page 71.)
• The default precision for numeric values is 6 digits. This cannot be changed. If your app

needs a different format, do not use SQLFormat() for that value.

NOTE: We strongly recommend the use of SQLFormat() when building SQL statements
to be submitted through SQLExec().
100 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLFormat()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector, make SQLxxx() funcs
available

set century on

? SQLFormat(10.2093) // Result: 10.209300 (Default
Precision = 6 digits)
? SQLFormat("PlugSys") // Result: 'PlugSys'
? SQLFormat(datetime()) // Result: {ts 2000-09-12
14:14:23}
? SQLFormat(ctot("10:10:10")) // Result: {t 10:10:10}
? SQLFormat(ctot("10/10/00")) // Result: {d 1900-10-10}
? SQLFormat(.F.) // Result: 0

Also see:
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC101

SQLMaxVarLen()
SQLMaxVarLen()
restricts the maximum data length when variable length fields are retrieved from a given
ODBC data source.

SQLMaxVarLen(newMaxLength)

Platforms:
! OXBC: ODBC

newMaxLength
is a numeric expression speficying the maximum length of variable length fields.

Return Value:

Returns the current setting. If the function is used to set a new value, it returns the previous
setting.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• Use SQLError() and SQLErrorMessage() to retrieve information about the error upon

failure.

Most RDBMSs support a series of variable length fields. These fields may contain text,
character or binary data. The most commonly used variable length SQL datatype is varchar.

SQLMaxVarLen() allows the application to specify a maximum length for all of the variable-
length fields returned from a given data source. This the ODBC Connector, when accessing
such fields, will download only that number of bytes. If necessary, the field contents will be
truncated to the maximum length you specify (newMaxLength).

This function is a tool for conserving memory. When a query is returned as a virtual DBF, the
data is cached in memory. The contents of all variable-length database fields can take an
enormous chunk of memory-- especially if the query returns a high number of rows and/or
variable length fields.

The default value for MaxVarLen is 512K.
102 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLMaxVarLen()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector to make SQLxxx()
functions available

Connected = SQLConnect("MS-SQLServer", "sa", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end

? "Preventing huge memos from being downloaded"
? "Displaying only the first page of each article"
SQLMaxVarLen(2048)

RecordSet = [SELECT AUTHOR, ARTICLE from KNOWLEDGEBASE]
USE &RecordSet alias KB
.
.
.
close
SQLDisconnect()

Also see:
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC103

SQLNull()
SQLNull()
specifies how the ODBC Connector will return NULL values.

SQLNull(newState)

Platforms:
! OXBC: ODBC

newState
a logical value (.T. or .F.) indicating the new state.

Return Value:

returns the current state. If the function is used to set a new state, it returns the previous
state.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• SQLNull(.F.) instructs the ODBC Connector to automatically convert all NULL values to the

appropriate empty values for the data type of the field. For instance, NULL character fields
return an empty string (""), numeric fields return 0.

• The status of SQLNull() can be changed at any time.
• The default value for SQLNull is ON.
104 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLNull()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector to make SQLxxx()
functions available

SelectStmt := [SELECT NAME, CITY, STATE, COUNTRY FROM CUSTOMERS
]

Connected = SQLConnect("MyODBCConnection", "max", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end

use CUSTOMERS query SelectStmt
if ! USED()

FatalError("Could Not Retrieve Data", SQLErrorMessage())
end

SQLNull(.F.) // NULL fields are returned as empty/printable
values

do while ! eof()
? CUSTOMERS->NAME
SKIP

end

close
SQLDisconnect()

Also see:
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC105

SQLRefresh()
SQLRefresh()
reissues the ODBC connection’s query and updates the Virtual DBF image with current data.

SQLRefresh()

Platforms:
! OXBC: ODBC

Return Value:
• If the SQL query for the virtual DBF (VDBF) in the current work area was successfully

executed, returns .T.
• Returns .F. upon failure of execution.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• Use SQLError() and SQLErrorMessage() to retrieve information about the error upon

failure.
• The virtual DBF is a “snapshot” of the data at the time the last query was executed. Your

application is not notified about subsequent changes occur to the SQL database.
• SQLRefresh() should be called immediately following SQLExec() to read any data

changes into the local data buffer.
• Call SQLRowCount() to determine the number of rows affected by the SQL statement

after execution.
106 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLRefresh()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector to make SQLxxx()
functions available
Connected = SQLConnect("SQLServer", "sa", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end

RecordSet = [SELECT ID, NAME, CITY, STATE from CUSTOMERS]
USE &RecordSet alias CUST
.
.
.
UpdateStmt = [UPDATE customers SET NAME = '] + mNewName + [' WHERE
ID = '] + CUST->ID + [']
bResult = SQLExec(UpdateStmt)
if !bResult

FatalError("Could not update customers table: ",
SQLErrorMessage())
end

? "Total Records Updated: " | SQLRowCount()
? "Showing cached records: VDBF cache still not updated"
go top
do while ! eof()

? recno(), CUST->ID, CUST->NAME, CUST->CITY, CUST->STATE
SKIP

end

? "Updating the Virtual DBF..."
SQLRefresh()
? "Now showing all records including latest changes:"
go top
do while ! eof()

? recno(), CUST->ID, CUST->NAME, CUST->CITY, CUST->STATE
SKIP

end
.

ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC107

SQLRefresh()
.

.
close
SQLDisconnect()

Also see:
108 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLRollback()
SQLRollback()
rolls back all transactions on the current work area. It requires AutoCommit mode to be
turned OFF.

SQLRollBack()

Platforms:
! OXBC: ODBC

Return Value:

Returns .T. if successful or .F. upon failure.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• Use SQLError() and SQLErrorMessage() to retrieve information about the error upon

failure.
• The virtual DBF is a “snapshot” of the data at the time the last query was executed. Your

application is not notified about subsequent changes occur to the SQL database.
• When AutoCommit mode is OFF, the application must explicitly commit or roll back

transactions with SQLCommit() or SQLRollBack(). (The default value for
SQLAutoCommit() is ON.)
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC109

SQLRollback()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector to make SQLxxx()
functions available

SQLAutoCommit(.F.) // Turning off AutoCommit mode:

Connected = SQLConnect("MS-SQLServer", "sa", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end

USE CUSTOMERS QUERY [SELECT ID, NAME, CITY, STATE from CUSTOMERS]

SQLExec([UPDATE CUSTOMERS SET name = 'new name' WHERE ID =
']+mID+['])
.
.
.
if TransactionCompleted

SQLCommit() // Commit transaction
else

SQLRollBack() // Roll back
end
.
.
.
close
SQLDisconnect()

Also see:
110 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLRowCount()
SQLRowCount()
identifies the number of rows affected by the the last invoked SQLExec() operation.

SQLRowCount()

Platforms:
! OXBC: ODBC

Return Value:

Returns the number of rows affected by the the last invoked SQLExec() operation.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• Call SQLRowCount() to determine the number of rows affected by the last executed SQL

INSERT OR UPDATE operation.
• SQLRowCount() is used only for SQL operations like INSERT and UPDATE that do NOT

return record sets. This is one way to determine whether the operation was successful
because the RDBMS typically indicates whether any rows were affected by the operation.

• Don’t use SQLRowCount() to test the result of SELECT operations. The way to get the
count is to call lastrec() or reccount().

• Use SQLDisconnect() and SQLErrorMessage() for diagnostic purposes if the function
fails.
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC111

SQLRowCount()
Example:
Connected = SQLConnect("SQLServer", "sa", "plugsys")

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end

RecordSet = [SELECT NAME, CITY, STATE from CUSTOMERS]
USE &RecordSet alias CUST
.
.
.
select CUST
bResult = SQLExec([UPDATE CUSTOMERS set NAME = '] + mNewName + ['
WHERE NAME = '] + CUST->NAME + ['])
if !bResult

FatalError("Could not update customers table: ",
SQLErrorMessage())
end

? "Total Records Updated: " | SQLRowCount()
.
.
.
close
SQLDisconnect()

Also see:
112 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLState()
SQLState()
returns SQLSTATE value strings as defined by X/Open Data Management: SQL Version 2.

SQLState()

Platforms:
! OXBC: ODBC

Return Value:

Returns a string that contain five characters indicating the SQLSTATE, according to the table
below.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC113

SQLState()
SQLSTATE Codes
• The character string value returned for an SQLSTATE consists of a two-character class

code followed by a three-character subclass value.
• A class value of “01” indicates a warning.
• Class values other than 01 and IM indicate an error.
• The class IM is specific to warnings and errors generated by ODBC itself.
• The subclass value “000” in any class indicates that there is no subclass for that

SQLSTATE.
• The assignment of class and subclass values is defined by the ANSI SQL92.standard.

SQLSTATE
Value

Status

00000 Success

01000 General warning

01001 Cursor operation conflict

01002 Disconnect error

01003 NULL value eliminated in set function

01004 String data, right truncated

01006 Privilege not revoked

01007 Privilege not granted

01S00 Invalid connection string attribute

01S01 Error in row

01S02 Option value changed

01S06 Attempt to fetch before the result set returned the first rowset

01S07 Fractional truncation

01S08 Error saving File DSN

01S09 Invalid keyword

07001 Wrong number of parameters

07002 COUNT field incorrect

07005 Prepared statement not a cursor-specification

07006 Restricted data type attribute violation

07009 Invalid descriptor index

07S01 Invalid use of default parameter
114 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLState()
08001 Client unable to establish connection

08002 Connection name in use

08003 Connection does not exist

08004 Server rejected the connection

08007 Connection failure during transaction

08S01 Communication link failure

21S01 Insert value list does not match column list

21S02 Degree of derived table does not match column list

22001 String data, right truncated

22002 Indicator variable required but not supplied

22003 Numeric value out of range

22007 Invalid datetime format

22008 Datetime field overflow

22012 Division by zero

22015 Interval field overflow

22018 Invalid character value for cast specification

22019 Invalid escape character

22025 Invalid escape sequence

22026 String data, length mismatch

23000 Integrity constraint violation

24000 Invalid cursor state

25000 Invalid transaction state

25S01 Transaction state

25S02 Transaction is still active

25S03 Transaction is rolled back

28000 Invalid authorization specification

34000 Invalid cursor name

3C000 Duplicate cursor name

3D000 Invalid catalog name

3F000 Invalid schema name

40001 Serialization failure
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC115

SQLState()
40002 Integrity constraint violation

40003 Statement completion unknown

42000 Syntax error or access violation

42S01 Base table or view already exists

42S02 Base table or view not found

42S11 Index already exists

42S12 Index not found

42S21 Column already exists

42S22 Column not found

44000 WITH CHECK OPTION violation

HY000 General error

HY001 Memory allocation error

HY003 Invalid application buffer type

HY004 Invalid SQL data type

HY007 Associated statement is not prepared

HY008 Operation canceled

HY009 Invalid use of null pointer

HY010 Function sequence error

HY011 Attribute cannot be set now

HY012 Invalid transaction operation code

HY013 Memory management error

HY014 Limit on the number of handles exceeded

HY015 No cursor name available

HY016 Cannot modify an implementation row descriptor

HY017 Invalid use of an automatically allocated descriptor handle

HY018 Server declined cancel request

HY019 Non-character and non-binary data sent in pieces

HY020 Attempt to concatenate a null value

HY021 Inconsistent descriptor information

HY024 Invalid attribute value

HY090 Invalid string or buffer length
116 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLState()
HY091 Invalid descriptor field identifier

HY092 Invalid attribute/option identifier

HY095 Function type out of range

HY096 Invalid information type

HY097 Column type out of range

HY098 Scope type out of range

HY099 Nullable type out of range

HY100 Uniqueness option type out of range

HY101 Accuracy option type out of range

HY103 Invalid retrieval code

HY104 Invalid precision or scale value

HY105 Invalid parameter type

HY106 Fetch type out of range

HY107 Row value out of range

HY109 Invalid cursor position

HY110 Invalid driver completion

HY111 Invalid bookmark value
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC117

SQLState()
HYC00 Optional feature not implemented

HYT00 Timeout expired

HYT01 Connection timeout expired

IM001 Driver does not support this function

IM002 Data source name not found and no default driver specified

IM003 Specified driver could not be loaded

IM004 Driver’s SQLAllocHandle on SQL_HANDLE_ENV failed

IM005 Driver’s SQLAllocHandle on SQL_HANDLE_DBC failed

IM006 Driver’s SQLSetConnectAttr failed

IM007 No data source or driver specified; dialog prohibited

IM008 Dialog failed

IM009 Unable to load translation DLL

IM010 Data source name too long

IM011 Driver name too long

IM012 DRIVER keyword syntax error

IM013 Trace file error

IM014 Invalid name of File DSN

IM015 Corrupt file data source
118 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLState()
Example:
SET DBTYPE TO ODBC // Load ODBC Connector to make SQLxxx()
functions available

Connected = SQLConnect("SQLServer", "sa", "plugsys")

if SQLError() < 0
? "ERROR: Failed to connect to SQLServer data source!"
? "Error Description = " + SQLErrorMessage()
? "SQLSTATE = " + SQLState()
Quit

end

if SQLError() > 0
? "WARNING: Successfully connected to SQLServer"
? "But driver issued a warning: " + SQLErrorMessage()
? "SQLSTATE = " + SQLState()
wait "Press any key to proceed..."

end
.
.
.
close
SQLDisconnect()

Also see:
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC119

SQLStringConnect()
SQLStringConnect()
establishes an ODBC connection with the specified ODBC data source name. (To be used
when the data source depends on an ODBC driver requiring more data parameters than
expected by SQLConnect().)

SQLStringConnect(ODBCConnectionString)

Platforms:
! OXBC: ODBC

ODBCConnectionString
the ODBC connection string as described in ODBC's specification. This should include:

• data source name (DSN)
• userID (one more more)
• password (one or more)
• other parameters required by the ODBC driver
• this is model syntax map for ODBC connection strings:
"DSN=data-source-name[;SERVER=server-
name][;PWD=passwordString] [;UID=value]
[;<Attribute>=<value>]"

Return Value:

SQLConnect returns .T. if the connection was successfully established or .F. if an error
occurred.

Remarks:
• You must load the ODBC connector with SET DBTYPE TO ODBC for this function to be

available to the application at runtime.
• Use SQLDisconnect() and SQLErrorMessage() for diagnostic purposes if the function

fails.
• With most ODBC drivers, you can omit certain parameters and the user will be prompted

for these at runtime. (Do not depend on this behavior for applications requiring total
automated operation such as web applications.)
120 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

SQLStringConnect()
The Data Source Name (DSN) is the name of the ODBC connection to be used (or in the
case of a file DSN, its filename). It contains all details about the connection. Before being
able to connect to a data source, it is necessary to run the ODBC configuration utility to
create or configure a data source. Data sources that describe connections with RDBMSs
usually contain information about the authentication method to be used. This may override
the UserId and Password parameters. If the data source is not properly configured the
connection will not work.

Certain DBMS engines (such as Microsoft SQL Server) offer the option of logging in using
operating system authentication. If your application is running on a remote server and
particularly if you are running separate operating systems, it may be necessary to configure
the SQL server to use the native DBMS authentication instead.

SQLConnect() establishes a connection within the current work area. After the connection
has been successfully established, the application may open a virtual DBF with the USE
command, specifying the SQL SELECT query necessary to return the result table to be
mapped into a Virtual DBF.

SQLCommit() establishes a connection on the current work area. After the connection has
been successfully established, the application may open a virtual DBF with USE.

The connection with the ODBC data source is not terminated if the Virtual DBF is closed with
CLOSE or USE. Once the connection has been established, it remains available until you
issue a SQLDisconnect(). Establishing a connection demands more processing than
most other operations. So keep connections open as much as possible.

Call SQLDisconnect() only when you absolutely need to explicitly close a connection.

ODBC connections are automatically disconnected when an application (or web connection)
terminates, so it is not mandatory to call SQLDisconnect() in many cases.

Notes:

SQLStringConnect() allows the driver to define an arbitrary number of keyword-value
pairs as required by an ODBC driver. For example, a certain driver requires a data source
name, a user ID and password for the server, and a user ID and password for the DBMS. A
program accessing the XYZ Corp data source might prompt the user for IDs and passwords
and build the following set of keyword-value pairs, or connection string, to pass to
SQLStringConnect():

DSN=XYZ Inc;UID=Adam;PWD=Sesame;UIDDBMS=QAdams;PWDDBMS=Shazam;
ODBC Connector Language Reference © 1998, 1999, 2000 PlugSys International LLC121

SQLStringConnect()
NOTE: This manual is not intended to document the entirety of the ODBC specifications or
features of particular ODBC drivers. For driver information, consult the vendor. For
further information on ODBC connection string syntax, see
http://msdn.microsoft.com/library/psdk/dasdk/orcd1i2b.htm

More background information on ODBC can be found at the Microsoft web site
(http://www.microsoft.com/data/odbc/ and http://www.microsoft.com/data/
doc.htm#odbc) and the web site for the UNIXodbc project.
(http://www.unixodbc.com)

Example:
SET DBTYPE TO ODBC // Load ODBC Connector to make SQLxxx()
functions available

SELECT 10 // Choosing a work area

conStr:=
"DSN=Inventory;UID=HWang;PWD=mypw;UIDDBMS=JGom;PWDDBMS=Shazam;"
Connnected := SQLStringConnect(ConStr)

if ! Connected
FatalError("Could Not Connect to ODBC Data Source",

SQLErrorMessage())
end

close
SQLDisconnect()

Also see:
122 © 1998, 1999, 2000 PlugSys International LLCODBC Connector Language Reference

PlugSys OXBC Data Access Guide 1

Introduction 9
What is OXBC?..10
Implementation Issues ...10

OXBC Driver Function Calls ...10

DBF Extender 11
Getting Started .. 11
About The DBF Extender ...12

Data Sharing...12
Higher Performance and Fewer Limits ..12

About CodeBase ...12
Supported File Formats...13

How CodeBase Works ..14
Scenario 1: The CodeBase API: (Programming in C).....................................14
Scenario 2: Using CodeBase OXBC (Simple, Transparent)...........................15

The DBF Extender Files..16
Implementation Constraints...16

Indexes..16
Complexity of Expressions 16
User-Defined Functions In Index Key Expressions 17
Single Index File Implementations: Supported and Unsupported 17
Other Implementation Issues 17
Multiple Index File Handling 18
About Production Index Files 19
How To Generate A FoxPro Production .CDX For The First Time 20
If A Production CDX Is Deleted Or Omitted From A Copy 20
HEADER() 20

About Indexes ...21
A Quick Introduction (For Xbase Beginners) ..21
Comparing The Formats..21
Index Expressions ...23

Multiple Indexes Are Better..23
Production Indexes & Conventional Indexes..24
Production Indexes Are Automatically Updated...24
© 1998, 1999 PlugSys International LLC 123

Creating Indexes ..24
Modifying Production File...25
Selecting A Tag In A Multiple Index File ..25

Record Navigation After Selecting a Tag 25
Indexes With Filtering Characteristics...26

Filter Expressions 26
Group Files: Making Clipper Indexes Emulate Multiple Index Files26

Creating Group Files 27
Creating Index Key Expressions That CodeBase Can Evaluate28

Operators..28
Numeric 28

Functions..29
Max Extension Functions...31

CBAutoOpen() ..32
CBIndexDescend() ...33
CBLargeOn()...33
CBErrorCode()..34
CBErrorText(nErrorCode) ...34

CodeBase Data Size Specifications ...34
Field Types. ..36

Error Codes ...41
Disk Errors..41
DBF Errors..43
Index Errorss..43
Expression Evaluation Errors...44
Optimization Errors ...46
SET RELATION Errors ...46
Severe Errors ...47
Unsupported Feature Errors...47
Memo Errors...47
Communication Errors ..48
Miscellaneous Errors...49
Server Failure Errors ...49

The PlugSys ODBC Connector 51
Getting Started ..51
What is ODBC? ...52
124 © 1998, 1999 PlugSys International LLC

Universal Access: Implementation Guidelines ...52
About The ODBC Connector..53

Supported Databases ..53
How The ODBC Connector Works...53

Accessing The Data: A Step-By-Step Explanation ...54
Exploring the Virtual DBF (vDBF)..56

What Is A "Virtual DBF" (vDBF)?..56
Navigation In A vDBF ..56
How To Create A vDBF ..57
The USE Command Syntax For ODBC ..58

USE 58
Tips About vDBF Operations ..60

Create Views 60
Field Naming Rules In Virtual DBFs...61

Field Name Length 61
Unnamed Column In SELECT Query 61
Non-Alphanumeric Characters In Data Source 62

Implementation Issues ...62
Determining What Features Are Supported ..62
Unsupported RDBMS Data Types...63
Conflicting Data Types (Xbase, SQL, ODBC) ..63
DateTime Data Type ...64
NULL Values ...64

Null Values Are Not Acceptable For Routine Xbase Operations 64
Acceptable Contexts For NULL values 65
Using Null Values 65

A Virtual DBF Cannot Be Indexed ..66
Workarounds 66
Index-Related Commands Are Not Supported 66
Instead of Indexes: Wise Coding For vDBF’s 67

Invalid Operations With A Virtual DBF...68
Using BROWSE/dbedit() With A Virtual DBF...68
Testing For An "Empty" Virtual DBF..68
Sources Of USE Errors With DBTYPE ODBC..69

Testing for USE Errors 69
69

vDBF And Header-Related Functions ..69
Workarounds 69
HEADER() 69
© 1998, 1999 PlugSys International LLC 125

Fetching Behavior..70
Microsoft SQL Server ..70

Workaround 70
ODBC Syntax For Database Interoperability ..70

ODBC Escape Sequences...71
Date and Time Values 71
Outer Joins 72
SQL Functions 72
LIKE Clauses 72
SQL Procedures 73

Frequently Asked Questions ...73
More Resources ..74

SQL..74
ODBC ..74

ODBC Connector Language Reference 75
General Language Constructs...76
SQL-Specific Language Constructs..81
126 © 1998, 1999 PlugSys International LLC

PlugSys OXBC Data Access Guide

Introduction
What is OXBC?
Implementation Issues

OXBC Driver Function Calls

DBF Extender
Getting Started
About The DBF Extender

Data Sharing
Higher Performance and Fewer Limits

About CodeBase
Supported File Formats

How CodeBase Works
Scenario 1: The CodeBase API: (Programming in C)
Scenario 2: Using CodeBase OXBC (Simple, Transparent)

The DBF Extender Files
Implementation Constraints

Indexes
Complexity of Expressions
User-Defined Functions In Index Key Expressions
Single Index File Implementations: Supported and Unsupported
Other Implementation Issues
Multiple Index File Handling
About Production Index Files
How To Generate A FoxPro Production .CDX For The First Time
If A Production CDX Is Deleted Or Omitted From A Copy
HEADER()

About Indexes
A Quick Introduction (For Xbase Beginners)
Comparing The Formats
Index Expressions

Multiple Indexes Are Better
Production Indexes & Conventional Indexes
Production Indexes Are Automatically Updated
© 1998, 1999 PlugSys International LLC 127

Creating Indexes
Modifying Production File
Selecting A Tag In A Multiple Index File

Record Navigation After Selecting a Tag
Indexes With Filtering Characteristics

Filter Expressions
Group Files: Making Clipper Indexes Emulate Multiple Index Files

Creating Group Files
Creating Index Key Expressions That CodeBase Can Evaluate

Operators
Numeric

Functions
Max Extension Functions

CBAutoOpen()
CBIndexDescend()
CBLargeOn()
CBErrorCode()
CBErrorText(nErrorCode)

CodeBase Data Size Specifications
Field Types.

Error Codes
Disk Errors
DBF Errors
Index Errorss
Expression Evaluation Errors
Optimization Errors
SET RELATION Errors
Severe Errors
Unsupported Feature Errors
Memo Errors
Communication Errors
Miscellaneous Errors
Server Failure Errors

The PlugSys ODBC Connector
Getting Started
What is ODBC?
128 © 1998, 1999 PlugSys International LLC

Universal Access: Implementation Guidelines
About The ODBC Connector

Supported Databases
How The ODBC Connector Works

Accessing The Data: A Step-By-Step Explanation
Exploring the Virtual DBF (vDBF)

What Is A "Virtual DBF" (vDBF)?
Navigation In A vDBF
How To Create A vDBF
The USE Command Syntax For ODBC

USE
Tips About vDBF Operations

Create Views
Field Naming Rules In Virtual DBFs

Field Name Length
Unnamed Column In SELECT Query
Non-Alphanumeric Characters In Data Source

Implementation Issues
Determining What Features Are Supported
Unsupported RDBMS Data Types
Conflicting Data Types (Xbase, SQL, ODBC)
DateTime Data Type
NULL Values

Null Values Are Not Acceptable For Routine Xbase Operations
Acceptable Contexts For NULL values
Using Null Values

A Virtual DBF Cannot Be Indexed
Workarounds
Index-Related Commands Are Not Supported
Instead of Indexes: Wise Coding For vDBF’s

Invalid Operations With A Virtual DBF
Using BROWSE/dbedit() With A Virtual DBF
Testing For An "Empty" Virtual DBF
Sources Of USE Errors With DBTYPE ODBC

Testing for USE Errors

vDBF And Header-Related Functions
Workarounds
HEADER()
© 1998, 1999 PlugSys International LLC 129

Fetching Behavior
Microsoft SQL Server

Workaround
ODBC Syntax For Database Interoperability

ODBC Escape Sequences
Date and Time Values
Outer Joins
SQL Functions
LIKE Clauses
SQL Procedures

Frequently Asked Questions
More Resources

SQL
ODBC

ODBC Connector Language Reference
General Language Constructs
SQL-Specific Language Constructs
130 © 1998, 1999 PlugSys International LLC

	PlugSys OXBC Data Access Guide
	Introduction
	What is OXBC?
	Implementation Issues
	OXBC Driver Function Calls

	DBF Extender
	Getting Started
	About The DBF Extender
	Data Sharing
	Higher Performance and Fewer Limits

	About CodeBase
	Supported File Formats

	How CodeBase Works
	Scenario 1: The CodeBase API: (Programming in C)
	Scenario 2: Using CodeBase OXBC (Simple, Transparent)

	The DBF Extender Files
	Implementation Constraints
	Indexes
	Complexity of Expressions
	User-Defined Functions In Index Key Expressions
	Single Index File Implementations: Supported and Unsupported
	Other Implementation Issues
	Multiple Index File Handling
	About Production Index Files
	How To Generate A FoxPro Production .CDX For The First Time
	If A Production CDX Is Deleted Or Omitted From A Copy
	HEADER()

	About Indexes
	A Quick Introduction (For Xbase Beginners)
	Comparing The Formats
	Index Expressions

	Multiple Indexes Are Better
	Production Indexes & Conventional Indexes
	Production Indexes Are Automatically Updated
	Creating Indexes
	Modifying Production File
	Selecting A Tag In A Multiple Index File
	Record Navigation After Selecting a Tag

	Indexes With Filtering Characteristics
	Filter Expressions

	Group Files: Making Clipper Indexes Emulate Multiple Index Files
	Creating Group Files

	Creating Index Key Expressions That CodeBase Can Evaluate
	Operators
	Numeric

	Functions

	Max Extension Functions
	CBAutoOpen()
	CBIndexDescend()
	CBLargeOn()
	CBErrorCode()
	CBErrorText(nErrorCode)

	CodeBase Data Size Specifications
	Field Types.

	Error Codes
	Disk Errors
	DBF Errors
	Index Errorss
	Expression Evaluation Errors
	Optimization Errors
	SET RELATION Errors
	Severe Errors
	Unsupported Feature Errors
	Memo Errors
	Communication Errors
	Miscellaneous Errors
	Server Failure Errors

	The PlugSys ODBC Connector
	Getting Started
	What is ODBC?
	Universal Access: Implementation Guidelines

	About The ODBC Connector
	Supported Databases

	How The ODBC Connector Works
	Accessing The Data: A Step-By-Step Explanation

	Exploring the Virtual DBF (vDBF)
	What Is A "Virtual DBF" (vDBF)?
	Navigation In A vDBF
	How To Create A vDBF
	The USE Command Syntax For ODBC
	USE

	Tips About vDBF Operations
	Create Views

	Field Naming Rules In Virtual DBFs
	Field Name Length
	Unnamed Column In SELECT Query
	Non-Alphanumeric Characters In Data Source

	Implementation Issues
	Determining What Features Are Supported
	Unsupported RDBMS Data Types
	Conflicting Data Types (Xbase, SQL, ODBC)
	DateTime Data Type
	NULL Values
	Null Values Are Not Acceptable For Routine Xbase Operations
	Acceptable Contexts For NULL values
	Using Null Values

	A Virtual DBF Cannot Be Indexed
	Workarounds
	Index-Related Commands Are Not Supported
	Instead of Indexes: Wise Coding For vDBF’s

	Invalid Operations With A Virtual DBF
	Using BROWSE/dbedit() With A Virtual DBF
	Testing For An "Empty" Virtual DBF
	Sources Of USE Errors With DBTYPE ODBC
	Testing for USE Errors

	vDBF And Header-Related Functions
	Workarounds
	HEADER()

	Fetching Behavior
	Microsoft SQL Server
	Workaround

	ODBC Syntax For Database Interoperability
	ODBC Escape Sequences
	Date and Time Values
	Outer Joins
	SQL Functions
	LIKE Clauses
	SQL Procedures

	Frequently Asked Questions
	More Resources
	SQL
	ODBC

	ODBC Connector Language Reference
	General Language Constructs
	USE
	isnull()
	unnull()

	SQL-Specific Language Constructs
	SQLAutoCommit()
	SQLCommit()
	SQLConnect()
	SQLDisconnect()
	SQLError()
	SQLErrorMessage()
	SQLExec()
	SQLFetchOnDemand()
	SQLFieldName()
	SQLFormat()
	SQLMaxVarLen()
	SQLNull()
	SQLRefresh()
	SQLRollback()
	SQLRowCount()
	SQLState()
	SQLStringConnect()

