
Clipper to Max Migration Guide 5
About This Document... 6
Why Max is the Evolution of Xbase... 6
Implementation Differences ... 8

Functions: Dummy Arguments ..8
File Formats* ..8
Preprocessor Directives..9
Preprocessor: #command, #translate..9
Indexes..10

Filename Extension 10
Data Type for Index Key Expressions 10
Using The SEEK Command Against A Non-Character Field 11
Unique Indexes Provide Integrity Protection 11

Conflicting User Defined Names ..12
Functions: User Defined Conflicting With Internal 12
Variables: Conflicting With Reserved Words 12

Multidimensional Arrays ...13
Expanded Color Handling ...13
FILE()...14
Compiling A Tree of Files..14
Miscellaneous ..15

Line continuation when calling user defined functions 15
SET KEY <keyname> TO <function(withParameter)> 15
Using achoice() With lastkey() 15
Status Codes: achoice(), dbedit(), memoedit() 16

Extended Features..17
Using Extended Mode ...17

How to Invoke Extended Mode 17
Invoking Extended Mode When Compiling 17
Invoking Extended Mode Within Your Source Code 18

Compiler Directives ...18
Function Prototype Directive 19

Default SET Values ..20
Literals vs. Quoted Strings vs. Variables ..21
Millenium Solution (Year 2000) ...21
Expanded Alias References..22
Operators..23

Assignment Operators: 23
© 1998, 1999, 2000 PlugSys International LLC 1

Universal Concatenation Operator 24
Increment and Decrement Operators 24

Functions..25
Function Improvements 25

Code Blocks ...26
Added Index Features ...26

Idle State Handling: idleb(), idlep(), idlem() 26
Multidimensional Arrays ...27
Variable Scoping..27
Field/Variable Precedence (SET PRECEDENCE) ..29
Integrated Debugger..29
Added Commands & Functions ...30

UNIX Support 30
IBM Mainframe Support 30
Database Handling 30
Color Handling 31
Numeric Handling 31
String Handling 32
Multiuser/Network Support 32
Branching Logic 32
Error Handling 33
File Handling 33
Keyboard Handling 34
Array Handling 35
User Interface Handling 36
Date/Time Handling 38

Unimplemented Features ...40
Preprocessor: #command, #translate..40
Pseudoclasses ...40
Don’t Abbreviate Commands..40

Clipper 5.x and Max 41
Introduction ...42

Fox Products and Max 43
Introduction ...44
Commands ..44
2 © 1998, 1999, 2000 PlugSys International LLC

BROWSE...44
CREATE STRUCTURE ...44
SCATTER and GATHER...45

Functions...45
Tips...45

Don’t Abbreviate Commands..45
How To Structure Your Source Code ...45

Compiling And Running The Application 45
Creating DBF Files...45

Max Additional Features 47
Introduction ...48
Long Names ..48
Intrinsic (In-Line) Parameters ..48
Scoping: LOCAL and STATIC ..49

Lifetime and Visibility ..49
Code Delimiters...50

Block Enclosure Characters ...50
String Enclosure Operator ..50
Line-splitting Array Initializer ...51
C-style remark operator ..51

Compiler Controls...51
Warnings...51
Platform Appropriateness Checking..51
Preprocessor Directives..52
Inline compiler directives..52

Inline Operators ..52
Compound-assignment operators ...52
Unary increment/decrement operators..53
Inline Assignment ..53

Codeblocks..53
Arrays...54

Multidimensional Arrays ...54
Array Declaration ...54

Pointer Operations..54
Universal Concatenator..54
Quoted String Expressions: Alternative to Macros and Literals......................................55
© 1998, 1999, 2000 PlugSys International LLC 3

KEY clause regenerates indexes...56

Migrating to the Web 57
Introduction ...58

1. Isolate All User Interface Code and Forms..58
2. Transform Xbase User Interface to HTML ...59

Typical Xbase Form 59
HTML Equivalent Form 60

3. Turn HTML Into Xbase Print Statements..61
4. Integrate All MaxWeb Code...63
5. Register Function and Procedure Prototypes ..63
6. Compile MaxWeb Code ...63
7. Test By Running Your Code With the MaxWeb Simulator63
8. Install Code On Web Server ..63
9. Embed Call to Invoke MaxWeb Within HTML Form63
10. Run Your MaxWeb Application...63
Simple MaxWeb Application ...64
4 © 1998, 1999, 2000 PlugSys International LLC

Clipper to Max Migration Guide

Clipper Migration Guide Version 2.00 2001-03-22a
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 5

About This Document

This guide will introduce you to Max, the evolution of Xbase. Using a well-understood
implementation as a point of reference, we identify differences and improvements. If you are
an Xbase programmer, this document will assist you as you assess your options.

This document aids Xbase programmers to:

• move program code from Summer ’87 and CA-Clipper 5.x applications to Max as quickly
and smoothly as possible

• to aid programmers in understanding how Max has evolved the Xbase language and
behaviors

This document is organized into two major sections:

• Implementation Differences- This section provides essential information to successfully
run legacy Clipper code. The focus is making you a successful Max developer. Following
our tips, you can quickly compile and run code you already have.

• Extended Features- Use this section to enhance your applications, to start new
development, and to expand your understanding of what Max can do.

Why Max is the Evolution of Xbase
With years of Xbase experience, we wanted Max to be a little smarter.

As a simple example, dBASE II was written to minimize typing for people who had to work
interactively at a dot prompt. So its designers avoided making the user type quotes when
opening a file with the use command. Max allows you to use this "shortcut" notation, since
we know it is your habit. But if you want greater precision and language consistency, Max
stands with you.

Because you are a professional, we designed Max to be more sensible. Max offers you more
formality if you choose to use it. And more functionality if you want to take advantage of the
power. For more on how we’ve expanded upon the Xbase promise, see Using Extended
Mode on page 17. This section gives you a broad overview at features we think you will want
to exploit. But for a full briefing, be sure to consult the Max Developer’s Overview and the
Max Language Reference.
6 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Before expanding your Xbase talents, you probably want to know where Max differs from the
Xbase environment you know best. The following section shows how to get your code
running with a minimum of recoding.

•

Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 7

Implementation Differences

Functions: Dummy Arguments
In some cases, Clipper supports the use of the logical data type placeholder arguments when
you want to pass default values on optional parameters. In many cases, this logical value is
holding the place for numeric or character types. Max maintains stricter type checking, so
placeholders will generate errors if the data type expected does not match the placeholder’s
type. Max supports empty parameters.

Solution: Remove Clipper placeholder values and use empty parameters instead.

Benefits:

• Empty parameters clearly document where you depend upon the default value for a
parameter

• Max’s strict type checking enables the compiler to identify data type errors. .

File Formats*

* Future Max versions may support ODBC access to other popular Xbase file formats.

Clipper dbedit(.t., .t., .t., .t., mFields)

Max dbedit(,,,,, mFields)

Clipper Max

Memory Files
(.MEM)

Files written by Max may not
always be successfully read by
Clipper or other Xbase products.

Files generated by other Xbase
products are automatically
recognized and read by Max, but
are written in Max format.

Index files .NTX files .MTX files are a Max format.
(Write code to regenerate your
indexes or use the KEY clause
IN USE or SET INDEX TO.)
8 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Preprocessor Directives
Max implements key preprocessor directives:

Preprocessor: #command, #translate
• Unlike CA-Clipper 5.x, the Max preprocessor does not impose case sensitivity.
• Pseudofunctions- Max will accept function name substitutions but does not perform

argument queueing.

Some Clipper 5.x preprocessor features are not implemented. For more information, see
Preprocessor: #command, #translate on page 9.

Directive Meaning

#define Define a manifest constant or pseudofunction

#else Code to be used if #ifdef or #ifndef is false

#endif Terminator for #ifdef and #ifndef directives

#ifdef Conditionally include code if identifier exists

#ifndef Conditionally include code if identifier does not exist

#include Include a file into the current source

#undef Removes a #defined identifier
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 9

Indexes

Filename Extension

Because the default Max index file extension in Max is .MTX, your legacy code will probably
refer to the wrong file extension.

Example:

Solution: Inspect your source code for locations where your code tests for or specifies
.NTX extensions. Replace all explicit .NTX references with .MTX.

Example:

Data Type for Index Key Expressions

Issue: Clipper allows you to specify an expression of any data type when an index key
consists of a single element (not compound) expression. Max only supports character data
types for index key expressions.

Example:

Solution: Use a data type conversion function if you specify a non-character field as a key
expression.

Note: Max, Clipper, dBASE and FoxPro all require you to convert all elements to character
strings when an index expression consists of a compound key.

if .not. file(“budget_partno.ntx”) && not the Max extension
&& for an index

&& generates .mtx file
index on budget->partno to budget_partno

endif
USE budget INDEX budget_partno

USE budget INDEX budget_partno KEY budget->partno

Field Type Size Dec
ITEMCOUNT N 5 0
index on itemcount to ndxcode && this would be a numeric key

Clipper INDEX on itemcount to ndxcode

Max INDEX on STR(itemcount,5) to ndxcode
10 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Using The SEEK Command Against A Non-Character Field

Issue: Once you have generated an index by converting a non-character expression to a
character data type, you must remember that SEEK (and FIND) will only succeed if you first
convert a numeric expression to character. If the SEEK command does not have a character
expression to work with, the result will always be a seek failure (EOF() = .T.)

Solution: Convert the seek expression to character:

Unique Indexes Provide Integrity Protection

Clipper allows indexes to be UNIQUE, but it does not guarantee the uniqueness of keys. When you
generate an index with the UNIQUE attribute in Max, Max will not insert duplicate index keys. In such
cases, REPLACE fails. Then use UNIQUEVIOL():

See the Max Language Reference for details.

var = 123
SEEK str(Var,12)

* REPLACE indexedField WITH duplicatedValue
if uniqueviol()

? "The uniqueness of this key would be violated."
inkey(3)
loop

endif
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 11

Conflicting User Defined Names

Functions: User Defined Conflicting With Internal

Issue: Clipper permits you to write user defined functions with names that conflict with its
own library of functions.

Solution: Use unique function names or provide a prefix:.

Solution: Prefix your UDF name to make it distinctive or use some other unique name.

Benefits:
• Max will not allow you to write function names that conflict with internal function names
• You cannot accidentally disable an internal function by naming one of yours identically.

Variables: Conflicting With Reserved Words

Issue: Max accepts reserved words as variable names.But if you use that variable on a
command line that also uses that same name as a reserved word, Max will generate an error.

Solution:

• Enclose the variable reference with parentheses. This creates an expression context;
within expressions there are no reserved words.

Example:

Clipper function seek&& acceptable
parameters CustomerName
return(CustomerName)

Max function seek&& Max generates error
parameters CustomerName
return(CustomerName)

function MySeek&& acceptable
parameters CustomerName
return(CustomerName)

CURSOR = .T.
Set CURSOR CURSOR && Max generates error
Set CURSOR (CURSOR) && This is acceptable
12 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Multidimensional Arrays
Max suports multidimensional arrays with an approach that is more consistent with other
conventional programming languages. Max does not support the CA-Clipper 5.x convention
of "ragged arrays" with cells pointing to other cells. (See Multidimensional Arrays on page 27.)

Expanded Color Handling
In almost every respect, Max allows you to specify color strings identically to Clipper, and
dBASE.

In some language elements, Max uses the fourth segment of the color string, normally
reserved for the “unselected color.” (For example, a field that is not currently visited by the
screen cursor.)

Example:

Max extends functionality in these commands and functions:

Tip: If you prefer a single color setting, use the same color specification in the first and fourth
segments of the color string.

set color to w/n, ; && 1st color: Normal
b/w, ; && 2nd color: highlighted
n, ; && 3rd color: border
i && 4th color: unselected

Command/Function 4th color segment is used for the following purpose:

@ ... GET Color of unselected fields (pending GET)

@ ... PROMPT Unselected menu choice. Also colors the message line
displayed by SET MESSAGE

ACCEPT Color of data after the user submits the value

INPUT Color of data after the user submits the value

BROWSE Color of currently selected field

dbedit() Color of currently selected field

EDIT MEMO Color of the marked block

memoedit() Color of the marked block

achoice() Color of unselected items
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 13

Note: The COLOR clause is available in all user interface commands, allowing you to specify
colors within each user interface object. The COLOR clause may be used with:

FILE()
Issue: Max does not support filemasks as parameters to the FILE() function.

Example:

Solution: Use the ADIR() function as an alternative:

Compiling A Tree of Files
Max supports "tree" compilation just like Clipper does. In Max, when you use the DO
command, do not specify file extensions if you depend upon tree compilation to include all
code for your application. Max automatically identifies the relevant file with a .PRG
extension:.

? ?? PRINT @

ACCEPT LIST CLEAR SET
SCOREBOARD

TYPE WAIT

FILE("*.dbf") && Does not work with Max

ADIR("*.dbf") != 0 && Use this instruction instead

Clipper DO first

*first.prg
DO second.prg

Max DO first

*first.prg
DO second
14 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Miscellaneous

Line continuation when calling user defined functions
• As in Clipper, dBASE and FoxPro, Max uses the semicolon as a line continuation

character allowing you to spread code to the following line. If you break a call to a function,
do not place the continuation character before the opening parenthesis:

SET KEY <keyname> TO <function(withParameter)>

Issue: Clipper and Max permit you to specify parameterless user defined functions when
binding a routine to a key on the keyboard. If you specify parameters anyway, Clipper nor
Max can process them. Clipper and Max behave differently under this misuse of the language

Example:

Set Key -1 to UserFunction(date())

Solution: Remove any parameters. If necessary, recode the function to perform correctly
when no user-defined parameters are available.

Using achoice() With lastkey()

Issue: In Clipper, the value of lastkey() is always reset to 0 after the function is called.
Max preserves the lastkey() value so it can be retrieved in subsequent calls. If you are
migrating Clipper code, your calls to achoice() may expect lastkey() to return 0.

Solution: Reset lastkey() value by calling lastkey(0) immediately before calling
achoice().

Max
Generates
Error

myValue = ValidateFields ;
(.T., "Test")

Acceptable myValue = ValidateFields(;
.T., "Test")

Clipper Max

Ignores parameter and runs the function
when user presses the specified key.

Generates an error.
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 15

Status Codes: achoice(), dbedit(), memoedit()

achoice()
dbedit()
memoedit()

• achoice() passes 5 status
codes

• dbedit() passes 5 status
codes

• memoedit() passes 5 status
codes

• achoice() passes 7 status
codes.

• dbedit() passes 8 status
codes

• memoedit() passes 6 status
codes

Max provides for more state
handling than Clipper does.

NOTE: If your application seems
to be "frozen" while one
of these functions was
called, check to see if
your application is
properly handling status
codes.

(See Functions on page 25.)
16 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Extended Features
Max was designed to quickly compile and run legacy Clipper code. But you can add
considerable power and reduce your coding effort if you take advantage of Max’s superset
features. This section summarizes Max benefits.

Using Extended Mode
As you go through the Max Language Reference, you will find details about extended mode
features and behaviors. When you use certain commands and functions in extended mode,
Max offers changed functionality. You can also find some introductory information about
extended features in this document:

• Default SET Values on page 20.
• Idle State Handling: idleb(), idlep(), idlem() on page 26.
• Array Handling on page 35.
• Miscellaneous on page 15.

How to Invoke Extended Mode
• At the compiler command line- this will have a global effect on all code compiled for this

application.
• In the source code- you can switch into $extended mode and back to $standard mode at

any time.

Invoking Extended Mode When Compiling
max -extended myprogram.prg
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 17

Invoking Extended Mode Within Your Source Code

Compiler Directives
Place these directives within your source code to trigger specific compile time actions:.

* myapp.prg
dfile = "customer.dbf"
$extended
USE dfile
$standard
USE mydbf INDEX myindex ALIAS myindex

Directive Meaning
$echo <"echostring">

Prints the message string <"echostring"> at
compile time (if and when that line is compiled).
• Used in conjunction with the pre-processor, you

can issue messages indicating whether certain
blocks of code are being compiled.

• Place $echo directives in key places within your
source code to assist in finding problem code
areas or to test control flow.

$extended
Use extended Max features

$standard
Use Clipper Summer ‘87 syntax and behaviors

$warn
Invoke/suppress compiler warnings (equivalent to
-W compiler flag)
18 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Function Prototype Directive

Xbase’s informality makes development fast, but can also lead to intensive debugging due to
ambiguities, data type mismatches, and parameter mismatches. Max introduces function
prototypes to Xbase. If you prototype your functions and invoke the appropriate warning
level, Max provides more rigorous compile time checking of your function calls than has ever
been offered in an Xbase product.

A prototype takes the following form:

$prototype <returnType> funcName(varType, varType, @, ?, ...)

Where:

Symbols for Parameter Types:

Symbol: Parameter Data Type Represented:

CHR Character

NUM Numeric

LOG Logical

DAT Date

? Indeterminate

VAR Variable name or Array name

@ Argument passed by reference.
(Can be used in combination
with other type symbols.)
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 19

Symbols for Return Type:

For more information on compiler directives, see Compiler Directives on page 18.

Also see Functions on page 25.

Introductory information on functions can also be found in the Max Developer’s Overview.

Default SET Values
In extended mode, Max implements different defaults for these SET commands:

Symbol: Return Data Type Represented:

CHR Character

NUM Numeric

LOG Logical

DAT Date

? Indeterminate

Clipper/Max Standard Max Extended Mode

SET DATE AMERICAN BRITISH

SET WRAP OFF
.F.

ON
.T.
20 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Literals vs. Quoted Strings vs. Variables
Because Max is an Xbase language environment, you can use macros just as extensively as
with any earlier Xbase product. But we’ve taken the Max a few steps further so that you can
avoid the performance penalties that come with macros.

The most obvious place to start is with the command lines that open DBF data tables, index
files and define the alias. Max allows you to use quoted strings or variables without requiring
macros:.

There is no need to do anything special to signal to Max that you are using quoted strings;
you can compile in standard mode. So you may use the classic Xbase/Clipper syntax, or
evaluate quoted strings.

Max automatically parses your literals, then it will correctly identify and evaluate an
expression if Max finds:

• a quote " as the first character of a literal
• an opening parenthesis (

Millenium Solution (Year 2000)
Max provides a fix for interpreting date variables and fields lacking 4-digits:

• Use the SET EPOCH command to specify a year serving as the beginning of a 100-year
period.

• Also SET CENTURY ON to ensure that all future data entry will require users to enter 4-
digit years.

References
to
filenames

Clipper Max

Literals /
Strings

USE myDBF INDEX dx USE myDBF INDEX dx
or:

USE “myDBF” INDEX “dx”

Variables

dfile=MyPath+"\"+MyDBF
* need macro
USE &dfile
* or expression
USE (dfile)
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 21

Consult the Max Language Reference for details on these two commands.

Expanded Alias References
Clipper allows programmers to point an alias to functions that don’t accept the alias as a
parameter. :

You may use the alias as a paraameter in these functions::

Clipper Max
recnow = cust->(RECNO()) recnow = RECNO("cust")

afields() deleted() found() lock()

bof() eof() header() lupdate()

dbfilter() fcount() indexkey() recno()

dbrelation() field() /
fieldname()

indexord() recsize()

dbrselect() flock() lastrec() /
reccount()

used()
22 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Operators

Assignment Operators:

Operator Action

:= Same as =.

memVar := 5 * 3

NOTE: This cannot be used as a logical equality operator. Use of this
operator for assignments makes your coding intentions more
specific than the = operator.

+= This compound operator adds operand2 to operand1:

operand1 += operand2

-= This compound operator subtracts operand2 from operand1:

operand1 -= operand2

*= This compound operator multiplies operand1 by operand2:

operand1 *= operand2

/= This compound operator divides operand1 by operand2:

operand1 /= operand2

^= This compound operate raises operand1 to the power of operand2.
(Operand2 is the exponent of operand1.)

operand1 ^= operand2

%= This compound operator divides operand1 by operand2 and returns the
remainder:

operand1 %= operand2
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 23

Universal Concatenation Operator

The universal operator is a special Max language feature permitting you to quickly force a
non-character expression into a character type while concatenating::

Increment and Decrement Operators
Increment and decrement operators are a concise way to add or subtract numeric values from a
variable:

The increment and decrement operators can appear as prefix or postfix operators:

• Postfix- If the operator appears after the variable name, increment operation happens after
any other operations that use that variable:
nVar1 := 5
nVar2 := nVar1++ && first assign to nVar2, then
increment
? nVar1 && result: 6
? nVar2&& result: 5

• Prefix- If the operator appears before the variable name, increment operation happens
before any other operations that use that variable:
nVar1 := 5
nVar2 := ++nVar1
? nVar1 && result: 6
? nVar2&& result: 6

Operator Action

| Concatenates multiple data types into one string; place between each
element.

Operator Type Operator Action

Increment ++ Increases value of variable while performing
operation.

Decrement -- Decreases value of variable while performing
operation.
24 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Functions

Function Improvements

The following functions may behave differently in certain circumstances:

Also see Function Prototype Directive on page 19.

Function Clipper Max

afields()
acopy()

• If an array has not
already been
declared, Clipper
will not create the
array.

• If the retrieved
data requires
more rows than
already declared
in the array,
Clipper will not
resize the array.

• When an array has not already been explicitly
declared, this function will automatically
create it for you.

• Max will automatically resize an array as
necessary.

Note: These behaviors only occur within regions
of code compiled with the $extended directive.
See the Functions reference for details.

achoice()
dbedit()
memoedit()

• achoice()
passes 5 status
codes

• dbedit()
passes 5 status
codes

• memoedit()
passes 5 status
codes

• achoice() passes 7 status codes.

• dbedit() passes 8 status codes

• memoedit() passes 6 status codes
Max provides for more state handling than
Clipper does.

Issue 1: You may have written UDF’s that test
for previously non-existent status codes.

Issue 2: Your user defined functions may not
adequately use all codes.

Solution for 1 & 2: In your called functions, use
DO CASE or ELSEIF to test for all possible
modes returned by Max.

NOTE: If your application seems to be "frozen"
while one of these functions was
called, check to see if your application
is properly handling status codes.
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 25

Code Blocks
Code blocks are short pieces of executable code, much like a user defined function but
without a function name. Like a macro, code blocks evaluate expressions.

• Code blocks perform better because they are compiled (unlike macros, which must be
expanded and evaluated at runtime).

• You can use code blocks to execute short code fragments directly at the location where
the code will be called.

• Code blocks may be assigned to variables.

Added Index Features
• Max provides a KEY clause for index commands. This enables your application to

automatically create index files when do not exist. Specify the KEY clause in the USE or
SET INDEX commands.

NOTE: In a multiuser environment, the regeneration of index files can impose
unacceptable delays due to file locking. Index generation is best left to small tables
used for lookups and light-duty purposes. Well designed applications should
include administration modules for system administrators to regenerate large
indexes at appropriate times when operations will not be impacted by the delay.

• Max provides a FOR clause, allowing you to create filtered indexes which include only the
subset of keys meeting a conditional expression you specify.

• Max provides uniqueness integrity so you can implement true primary keys. (See Unique
Indexes Provide Integrity Protection on page 11.)

Idle State Handling: idleb(), idlep(), idlem()

When you implement achoice(), dbedit() and memoedit(), Max calls your UDF during idle
states. If you would like background tasks to execute during idle states, call idleb(),
idlep()and idlem().

See the Max Language Reference for details.f
26 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Multidimensional Arrays
Max suports multidimensional arrays. A series of array-handling functions are added to work
better with multidimensional arrays: :

In addition to providing expanded data manipulation, Max multidimensional arrays are ideal
data structures for storing lists. Before Max you called adir() and afields() and dumped the
results into multiple parallel arrays. With Max, you only need one multidimensional array.

DECLARE MyArray[2,4]

Details on these functions may be found in the Max Language Reference. Multidimensional
arrays are described in the Max Developer’s Overview.

Variable Scoping
There are four classes of variables: PUBLIC, PRIVATE, LOCAL and STATIC. Each has its
own scope characteristics. The scope of a variable determnes its lifetime and visibility:

mcopy() mdel() mdir()

mfields() mins() msort()

Lifetime Visibility

PUBLIC From creation until the
termination of the
program or the program
or RELEASE.

From creation until the
termination of
RELEASE.

PRIVATE From creation until
control returns to any
function or procedure
above the module in
module in which the
variable was created.

From creation until
control returns to any
function or procedure
above the which the
variable was created.
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 27

LOCAL Only as long as the
module where the
variable was created
variable was created is
still running.

Only as long as the
module where the is still
running.

STATIC From creation until the
termination of the
program or variable was
created is still running.

Only as long as the
module where the
RELEASE.

Lifetime Visibility
28 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Field/Variable Precedence (SET PRECEDENCE)
Xbase is ambiguous in naming and referencing variables and fields. We know that cust-
>lastname is a field and m->lastname is a variable. The alias pointers tell us that
explicitly. But is lastname a field or is it a variable?

By default, Xbase searches first for a field by that name. If none is available, it will then look
for a memory variable with that name. Routines produce unexpected results because their
variables refer to a database field that in certain contexts may or may not be available. This
behavior can result in long debugging sessions for you.

Use SET PRECEDENCE TO VARIABLES among your application’s initialization
instructions to reverse the evaluation order Max employs when evaluating the name. (The
result: Max evaluates ambiguous references by first consulting its list of in-scope variables.
And then if no such variable exists, Max accessess the in-context fields.) This ensures you
are referring to variables rather than fields when the name is ambiguous. But it still permits
Max to consult the available fields if no such variable exists.

NOTE: Don’t make implicit use of default behaviors. We strongly recommend that Max
programmers use explicit references to fields by using work area pointers. This
makes your applications more bug-free and it also documents your intent within the
source code.

NOTE: When you use the CA-Clipper 5.x /V compiler switch, you are globally declaring all
ambiguous references to be variables. (This is as if you applied m-> pointers to all
ambiguous references within the code you have compiled.)

For more details, consult the Max Language Reference.

Integrated Debugger
The debugger is part of MaxRun. You activate it:

• by pressing ALT+D while running the app
• by specifying the -d switch on maxrun's command line

To view source, the source modules must in the same physical directory as the .max file.
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 29

Added Commands & Functions
Max’s language set adds significant functionality. You can run your Clipper programs without
extending functionality, but we recommend that you familiarize yourself with the many
valuable benefits Max adds:

UNIX Support

IBM Mainframe Support

Database Handling

termlog() returns the name of the device associated with the current terminal
login, like : "/dev/tty1a"

termname() returns the terminal emulation type for the current login, like: ansi,
vt100, etc

termwrite() bypasses screen buffers and all screen output translation routines,
and writes directly to the screen device

asc2ebc()
converts a character expression in ASCII a a character string in
EBCDIC

ebc2asc()
is used to convert a character string in EBCDIC to a character string
in ASCII

BROWSE
provides dbedit() functionality using dBASE / FoxPro syntax. (See
the list of clauses to control the browes behavior.)

uniqueviol()
determines if there was an index key uniqueness violation in any
index associated with the specified database file work area
30 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Color Handling

Numeric Handling

asciicor()
converts a color (in the format "foreground/background") to a
number that encodes the colors requested

decodcor()
decodes a color code into a string in the format "foreground/
background"

bin2f() converts a character string with 8 bytes in IEEE format to a number

f2bin()
converts a floating-point number to a character string with 8 bytes in
IEEE floating-point format

lennum() determines the number of significant digits of a number

log10() calculates the base 10 logarithm of the number specified

mod() returns the remainder of a division

mod10()
calculates the check control digit of a string based on mod10
algorithm

mod11()
calculates the check control digit of a string based on mod11
algorithm

rand() generates a random number between 0 and 0.999999

sign() returns the sign of a number

w2bin() converts a number to a 2 character string
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 31

String Handling

Multiuser/Network Support

Branching Logic

difference() compares two strings, on the basis of SOUNDEX codes

like() compares a string with a wild card pattern

initcap()
converts the initial characters of all words on the specified string to
capital letters

pad()
returns a new string of the length specified by pad_length
(Clipper 5.x compatible)

raw()
returns a string with all uppercase letters and converts all accented
characters to equivalent characters without accents

SET
AUTOLOCK

When enabled, automatically lockes index files during each user
update to the DBF.

network()
returns whether the application is running on a multiuser
environment.

switch()

evaluates two or more expressions sequentially, returning the result
of one of them according a the conditions evaluated. It is similar a
the DO...CASE command, except that it can be used within
expressions
32 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Error Handling

File Handling

criticalerror()
is called when a critical error is issued by the OS. This function can
be redefined by the user for custom behavior

uniqueviol()
determines if there was an index key uniqueness violation in any
index associated with the specified database file work area

usererror() is executed whenever an error occurs (before userexit())

userexit() is executed when the application is terminating

attrib() returns and optionally changes attributes of a file

cd() changes the current directory

fcommit() forces the OS to write to disk any buffered data for the specified file

fpath() returns the full path name of the specified file

indexalias() returns the alias for the DBF associated with this index file

indexfor() returns the filter expression when indexing on a FOR condition

md() creates a directory

rd() removes a directory
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 33

Keyboard Handling

autoclose() closes the file opened by autorec() or autorun().

autorec()
records all keyboard data entry into a file, storing the key pressed
and the time intervals.

autorun()
plays a previously recorded file created by autorec(), reproducing
keyboard data entry.

capslock() returns and optionally changes the status of the CAPSLOCK key

isalt() determines the current status of the ALT key.

isctrl() determines the current status of the CTRL key.

isins() determines the current status of the INS key.

islshift() determines the current status of the left SHIFT key

isrshift() determines the status of the right SHIFT key.

numlock()
returns the current status of the NUMLOCK key and optionally sets
NUMLOCK with a new status.

restkey()
restores the function that was associated with a key before it was
saved with savekey().

savekey() saves the function associated to a key with the SET KEY.

scrlock()
returns and optionally changes the status of the SCROLL LOCK
key.

xlastkey()
returns the code for the last key read from the keyboard buffer and
optionally allows this code to be changed
34 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Array Handling

adeclare()
is used to declare an array when its name and number of elements
are defined only at run time.

ainit() declare/initializes the elements of an array

alen() returns the number of elements on multi-dimensional arrays

aredim()
redimensions an array, keeping its old elements and if the array
does not exist, aredim() declares it

arraycont()
allows indirect access a elements of an array specifing a character
expression as the array name and a numeric expression as the
array index. (Instead of using a macro to refer to the array.)

arraylen()
returns the number of elements for the specified array. The array
name is a character expression. (Instead of using a macro to refer to
the array.)

arraystore()
allows indirect assignment a array elements using a character
expression a specify the array name. (Instead of using a macro to
refer to the array.)

axchg() exchanges array elements

mcopy() duplicates an array with one or multiple dimensions

mdel() deletes elements in multi-dimensional arrays

mdir() is the multi-dimensional array version of adir()

mfields() is the multi-dimensional version of afields()

mins() inserts elements in multi-dimensional arrays

msort() is the multi-dimensional version of asort()
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 35

User Interface Handling

AT row, col same as @ row, col

BROWSE
allows you to inspect and edit the data of one or more database files
in a familiar tabular format

EDIT MEMO allows you to edit or just display the contents of any string

POPUP allows you to create popup menus as with achoice()

SET PICTURE
specifies a format mask that determines the display and entry of
data using SAY AND GET

SET POINT
allows you to define a character which will be used to separate the digits about the
decimal point of a number for the purposes of displaying and entering data

SET
SEPARATOR

SET SEPARATOR sets which character will be used to separate
groups of three (3) digits to the left of the decimal point

SET
TOPCHARS

defines a translation array for ASCII codes above 127

asciicor()
converts a color (in the format "foreground/background") to a
number that encodes the colors requested

decodcor()
decodes a color code into a string in the format "foreground/
background"

editing() determines if the current GET is being processed

explode()
draws an exploding box in the window defined by specified
coordinates

gotoget()
returns the number of the current GET being processed and also
permits the user to jump to a specified GET

poscur()
positions the screen cursor at a specified position. The limits of
these coordinates are defined by maxrow() and maxcol(),
respectively

redraw() forces the entire screen to be redrawn
36 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

idleb()
gives the current status of the BROWSE/dbedit() idle mode and
optionally sets the BROWSE/dbedit() idle mode to active or not
active

idlem()
gives the current status of the EDIT MEMO/memoedit() idle mode
and optionally sets the EDIT MEMO/memoedit() idle mode

idlep()
checks or sets the POPUP idle mode status. This permits the
repeated execution of the function associated with POPUP during
the wait for any key pressed

maxcol() returns the number of the last column of the screen

maxrow() returns the number of the last row of the screen
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 37

Date/Time Handling

SET HOURS
permits you to set whether 12 or 24 hour format is used for
formatting hours, in all related commands

SET MARK
defines which character will be used to separate the day, month and
year fields of all displayed dates and date data-entry masks

ampm()
converts a character expression in 24 hour time format
("HH:MM:SS") a a character string in 12 hour format ("HH:MM:SS
am/pm")

days()
calculates the number of days from a given number of seconds. (1
day= 86,400 secs)

dmy()
converts a date to a date in a more readable format. This format is
"dd month_name YY/YYYY", depending on the status of SET
CENTURY

elaptime() calculates the difference between end_hour and begin_hour.

mdy()
converts a date to a string in long format. Its format is
"month name dd, YY/YYYY" depending on the status of SET
CENTURY

secs() converts a time string in the format "HH:MM:SS" into seconds

stod()
converts a character string in the format "YYYYMMDD" to a date
value

tstring()
converts the number of seconds specified to a time character string
in the format "HH:MM:SS"
38 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

seek() searches the master index of the database file

set()
returns the current state of the specified SET
(Clipper 5.x compatible)

store() stores an expression into a specified memory variable

videomode()
returns the current mode of your video card. This mode can be
changed with videomode() in DOS

vtype() returns the type of the variable or field that is specified
Clipper to Max Migration Guide © 1998-2000, PlugSys International LLC 39

Unimplemented Features
Max embraces the good things that Clipper has to offer. But there is a short list
unimplemented features to note:

Preprocessor: #command, #translate
Unlike CA-Clipper 5.x, the Max preprocessor does not impose case sensitivity.

Max does not implement the language creation/simulation features.:

• #command
• #translate
• the ability to simulate parameter passing for pseudofunctions.

For information on the implemented preprocessor features, see the Max Developer’s
Overview and Preprocessor Directives on page 9.

Pseudoclasses
• Error

• Get

• TBrowse

• TBColumn

Don’t Abbreviate Commands
Max does not always recognize abbreviations. So if you develop errors in your application for
no obvious reason, check if an abbreviation is the cause. (Example: LOCA is not an
acceptable replacement for LOCATE.)
40 © 1998-2000, PlugSys International LLC Clipper to Max Migration Guide

Clipper 5.x and Max
Clipper 5.x and Max
 41

Introduction
Max represents the language features at the core of Clipper and Xbase. PlugSys believes
that CA-Clipper 5.x introduced many truly useful features. But unfortunately it also
unnecessarily complicated application development.

The introduction of "pseudoclasses" mimicked superficial aspects of object oriented
programming. But CA-Clipper 5.x did not allow programmers to subclass these objects nor
did the product support inheritance.
42 © 1998-2000, PlugSys International LLC Clipper 5.x and Max

Fox Products and Max
Fox Products and Max
 43

Introduction
Once upon a time FoxBase and FoxPro was manufactured as cross platform products. But
it’s no longer possible to develop Fox applications for UNIX.

Max shares an Xbase heritage with Fox products. There is a broad common set of
commands and functions recognizable to Fox programmers. But you’ll also need to make
some adjustments. This chapter offers some practical information to help you think about the
migration process.

• Language differences- As you attempt to compile code, you will discover some language
constructs unsupported in Max. Some commands and functions will have subtle but
differences. (Different or missing parameters.) Check the Max Language Reference for the
details.

• Compiled vs. Interactive- Fox products, like dBASE before them, were intended to be used
in an interactive mode. Max is intended to compile source code. These differences surface
in many areas. For example Fox allows you to call BROWSE without a single parameter.
The Max BROWSE command requires a field list because it does not have an interactive
environment to examine the DBF structure at runtime. Similarly, Max does not suppy a
native interactive environment to create new DBF table files. (More applications are
connecting to SQL databases, so over time this becomes less significant.)

• Text-oriented displays- Like SCO FoxBase, Max runs text-oriented applications. FoxPro
and Visual FoxPro developers will not find spinners and combo boxes in Max applications.
(If graphical user interfaces are important to you, this could be one of many good reasons
for you to consider web development.)

Commands

BROWSE

CREATE STRUCTURE
Max offers language constructs to permit DBF file creation. For more information, see
Creating DBF Files on page 45.
44 © 1998-2000, PlugSys International LLC Fox Products and Max

SCATTER and GATHER

Functions

Tips

Don’t Abbreviate Commands
When dBASE II was around, it was small (the entire program fit on a single 160K diskette).
And the number of commands was small. Because dBASE was interactive, its designers
allowed users to save typing by abbreviating commands to 4 characters.

Max does not always recognize abbreviations. So if you develop errors in your application for
no obvious reason, check if an abbreviation is the cause. (Example: LOCA is not an
acceptable replacement for LOCATE.)

How To Structure Your Source Code
• Procedures and functions must have unique names if they appear anywhere in the

application. Max does not support DO <procName> IN <PRGfile>.

Compiling And Running The Application

Creating DBF Files
Fox Products and Max © 1998-2000, PlugSys International LLC 45

46 © 1998-2000, PlugSys International LLC Fox Products and Max

Max Additional Features
Max Additional Feature
s 47

Introduction
Once upon a time there was an effort to establish and ANSI/ISO language standard for
Xbase. You can read more about this effort at http://www.database.org/x3j19/. Our
assumption here is that all Xbase programmers are familiar with the language features of
dBASE III Plus, which constituted the base from which the Xbase Language Standard
(X3J19) started its work.

This chapter introduces you briefly to features that extend Xbase beyond the dBASE III Plus/
Clipper Summer ’87 language core.

• Some of these features appear in Xbase implementations that followed dBASE III Plus
and Clipper Summer 87.

• Other elements listed here are unique Max ease-of-use features.

Long Names
• Variable Names: can exceed 10 characters. Max does not truncate variable names.

Xbase products that enforce the 10-character maximum quietly truncate the variable
names and will cause problems (invoicetot and invoicetotal2 are seen as the
same in products of that type.).

• UDF Names: There are no practical restrictions on the length of UDF names.

Note: Fieldnames are limited by the database structure to which Max is connected. By
default, Max connects to Xbase .DBF files, which impose a maximum 10-character
fieldname.

Intrinsic (In-Line) Parameters
Parameters can be declared in the function header:

Function Func1(Name, City, State)
48 © 1998-2000, PlugSys International LLC Max Additional Features

Scoping: LOCAL and STATIC
Classic Xbase did not provide a good way to automatically "protect" variables in one function
or procedure from interactions with other subroutines.

A private variable hides itself from routines above the function or procedure that declared it.
But no protection was provided for that same variable in lower level routines.

Max provides the LOCAL variable scope declaration. So you can be assured that the lifetime
and visibility of the variable are both limited to the function or procedure in which it is created.

Max provides the STATIC variable scope declaration. So you can hold values and make them
available whenever a certain function or procedure regains control. (For example to retain
and process a total invoice amount.)

Lifetime and Visibility
Lifetime Visibility

PUBLIC From creation until the
termination of the program or
RELEASE.

From creation until the
termination of the program or
RELEASE.

PRIVATE From creation until control
returns to any function or
procedure above the module in
which the variable was created.

From creation until control
returns to any function or
procedure above the module in
which the variable was created.

LOCAL Only as long as the module
where the variable was created is
still running.

Only as long as the module
where the variable was created is
still running.

STATIC From creation until the
termination of the program or
RELEASE.

Only as long as the module
where the variable was created is
still running.
Max Additional Features © 1998-2000, PlugSys International LLC 49

Code Delimiters

Block Enclosure Characters
Long command lines do not require semi-colons on every line. Just place the block enclosure
characters before and after the command line:

String Enclosure Operator
Allows specification of long strings that spread across several lines. This becomes
especially useful for SQL queries and HTML:

replace CUST->NAME with M->NAME, ;;
CUST->CITY with M->CITY,
CUST->STATE with M->STATE,
CUST->ZIP with M->ZIP,
for CUST->STATE = "CA"
...
;.

Mask := {{
<table width="100%" cellspacing="0" cellpadding="0">
<tr bgcolor="#CCCC99">
<td>

@LocCategory</td>
</tr>
</table>
}}
50 © 1998-2000, PlugSys International LLC Max Additional Features

Line-splitting Array Initializer
Arrays can be initialized across several lines without the need to use the semi-colon at the
end of each line.

C-style remark operator
If you would prefer to avoid confusing your code comments with the macro operator, use this
comment marker: :

Compiler Controls

Warnings
Max supports 4 levels of warning severity.

The compiler automatically checks and detects argument type mismatch in expressions
using internal functions. The compiler knows the argument and return types of all internal
functions. It is also possible to prototype UDFs so that calls to these UDFs will also be
checked for potential errors at compile time.

Platform Appropriateness Checking
The compiler warns when you attempt to use language features which are clearly inapplicable
to the current environment.

Array1 := { 1,
2,
3,
4,
5
}

? InvoiceTotal // Showing the invoice total
Max Additional Features © 1998-2000, PlugSys International LLC 51

Preprocessor Directives
C and C++ programmers have benefitted from these directives for years. They're easy to
implement but allow you to improve the readability and maintainability of your code:

#include
#define
#ifdef...#else...#endif
#undef

Inline compiler directives
These allow you to specify compiler behaviors within areas of code:

Inline Operators

Compound-assignment operators

$standard (Default mode) This is the best choice for migrating Clipper
Summer 87 code.

$extended Provides improved functionality. (For details on extended
mode, see Max Language Reference.)

You may also invoke extended mode at the
compiler comamnd line with the -extended
parameter.

$echo

$warn

+=

-=

*=

/=

^=

|=
52 © 1998-2000, PlugSys International LLC Max Additional Features

Unary increment/decrement operators

Change values while performing an operation:

Inline Assignment
The optional use of assignment operator provides a clear way to differentiate between
equality tests and value assignments. Allows assignments inside expressions, as in C.

Codeblocks
Code blocks, highly regarded in Clipper 5.x, permit dynamic evaluation of code operations that would
otherwise require a function. These are ideal for small code fragements that would otherwise require
writing a UDF.

++

--

customers=0
DO WHILE .NOT. EOF()
...
customers++
ENDDO

* Set value of myvar1 equal to myvar2
* Compare if it is greater than 5
IF (myvar1 := myvar2) > 5
…
ENDIF
Max Additional Features © 1998-2000, PlugSys International LLC 53

Arrays

Multidimensional Arrays
Other Xbase implementations have arrived at non-standard array implementations. Rather
than using ragged arrays as in Clipper 5.x (where individual array elements can point to other
arrays), Max supports true multidimentional arrays. Also there are the necessary utility
functions to sort and manipulate tabular data.

Array Declaration
See Line-splitting Array Initializer on page 51.

Pointer Operations
Allows you to capture and retrieve the address of specific functions into POINTER variables.
Indirect calls can be made using pointer variables through the CALL() function. Code
invoked this way offers a significant performance advantage over macros or expression
evaluation.

Universal Concatenator
Cut coding normally required to converting and display compound strings based on multiple
data types.

? "Total: " | TotFields | " - done on " | Date() | " at " | Time()

TaxCalcRoutine = Address("Calc1")

CheckOut(TaxCalcRoutine)
...
Function CheckOut(TaxRoutineAddress)

Call(TaxRoutineAddress, TotalSale, State)
54 © 1998-2000, PlugSys International LLC Max Additional Features

Quoted String Expressions:
Alternative to Macros and Literals
When opening files in Xbase, experienced programmers prefer holding the filenames in a
layer of abtraction removed from the code. You can do this in two ways:

• Treating the filenames as "constants" which may be evaluated at compile time. (This is
achieved using the Max preprocessor. For more information, see Preprocessor
Directives on page 52)

• Resolving the names at runtime (using memory variables).

Either approach allows you to "name the files" in one place in your code or even create a
user-controlled configuration module where the filenames are defined. In order to do this with
most Xbase products, you need macros to expand the filenames at runtime.
Max Additional Features © 1998-2000, PlugSys International LLC 55

Max supports macros (which are indicated with the & flag). But you can improve performance
and enhance readability by eliminating macros using this more orthogonal quoted string
syntax::

Note the use of the inline compiler directives ($extended and $standard). These permit
Max to resolve this unique-to-Max feature ($extended) and return to legacy behaviors
($standard). See Inline compiler directives on page 52.

KEY clause regenerates indexes
The KEY clause is where you specify the key expression for a given index. This clause is
available for commands that open index files. (USE, SET INDEX TO)

The KEY clause:

• Saves you the bother of writing code for regenerating index files.
• Saves you the work of invoking the key regeneration routine.
• Provides a self-documenting way to declare index expressions.

$extended

USE "mydbf" INDEX "myindex" ALIAS "mine"
DBFfile := "mydbf"
Nxfile := "myindex"
AliasName := "mine"
USE DBFfile INDEX Nxfile
ALIAS AliasName
$standard

USE mydbf INDEX myName KEY "UPPER(lastname + firstname)"
56 © 1998-2000, PlugSys International LLC Max Additional Features

Migrating to the Web
Migrating to the Web
 57

Introduction
If you’ve read this far, you must have some Xbase applications that would benefit from a
beauty makeover and an architectural update. This chapter assumes your code already
compiles and runs successfully under Max as per the recommendations elsewhere in this
book.

This chapter helps you prepare applications written in Max’s flavor of Xbase to run as web
applications.

1. Isolate All User Interface Code and Forms
The web provides rich user interface objects (such as radio buttons, picklists, checkboxes,
and push buttons). To get the benefit of these in your MaxWeb application, you’ll need to
remove all user interface code that may be mixed with other procedures and functions.

The easiest approach is to take each cluster of user interface code (such as GETs, dbedit(),
memoedit(), etc.) and create a separate Xbase function as if this was an Xbase FORM (as in
SET FORM TO).
58 © 1998-2000, PlugSys International LLC Migrating to the Web

2. Transform Xbase User Interface to HTML

Typical Xbase Form
SET COLOR TO bg+/b,r/w
CLEAR
STORE SPACE(20) to namefirst, namelast, address, city, state
STORE SPACE(2048) to comm
STORE .F. to pen, pencil, eraser, notebook, pad, breakfast, lunch,
dinner

@ 2, 2 SAY "First name" GET namefirst
@ 2,40 SAY "Last name" GET namelast
@ 4, 2 SAY "Address " GET address
@ 6, 2 SAY "City " GET city
@ 6,40 SAY "State" GET state

@10, 2 say "Items required:"
@11, 5 say "Pen" get pen PICTURE "@! Y"
@11,20 say "Pencil" GET pencil PICTURE "@! Y"
@11,35 say "Pad" GET pad PICTURE "@! Y"
@11,50 say "Notebook" GET notebook PICTURE "@! Y"

@13, 2 SAY "Meals:"
@14, 5 say "Breakfast" get breakfast PICTURE "@! Y"
@14,25 say "Lunch" get lunch PICTURE "@! Y"
@14,45 say "Dinner" get dinner PICTURE "@! Y"

comm = memoedit(comm, 18, 2, 26, 60)
READ
Migrating to the Web © 1998-2000, PlugSys International LLC 59

HTML Equivalent Form
<HTML>
<BODY BGCOLOR="#CCCC99">

<FORM>
<TABLE>

<TR>
<TD>First name</TD>
<TD><INPUT TYPE="text" NAME="namefirst" SIZE="20"></TD>

</TR>
<TR>

<TD>Last name</TD>
<TD><INPUT TYPE="text" NAME="namelast" SIZE="20"></TD>

</TR>
<TR>

<TD>Address</TD>
<TD><INPUT TYPE="text" NAME="address" SIZE="20"></TD>

</TR>
<TR>

<TD>City</TD>
<TD><INPUT TYPE="text" NAME="city" SIZE="20"></TD>

</TR>
<TR>

<TD>State</TD>
<TD><INPUT TYPE="text" NAME="state" SIZE="20"></TD>

</TR>
</TABLE>
<P>
Pen <INPUT TYPE="radio" NAME="supply" VALUE="pen">
Pencil <INPUT TYPE="radio" NAME="supply" VALUE="pencil">
Pad <INPUT TYPE="radio" NAME="supply" VALUE="pad">
Pen <INPUT TYPE="radio" NAME="supply" VALUE="notebook">
</P>
Breakfast <INPUT TYPE="checkbox" NAME="breakfast" VALUE="1">
Lunch <INPUT TYPE="checkbox" NAME="lunch" VALUE="1">
Dinner <INPUT TYPE="checkbox" NAME="dinner" VALUE="1">
<P>
<TEXTAREA ROWS="5" COLS="40"></TEXTAREA>
</P>
</FORM>

</BODY>
</HTML>
60 © 1998-2000, PlugSys International LLC Migrating to the Web

3. Turn HTML Into Xbase Print Statements
Migrating to the Web © 1998-2000, PlugSys International LLC 61

 ? [<HTML>]
? [<BODY BGCOLOR="#CCCC99">]
? []
? [<FORM>]
? [<TABLE>]
? [<TR>]
? [<TD>First name</TD>]
? [<TD><INPUT TYPE="text" NAME="namefirst" SIZE="20"></TD>]
? [</TR>]
? [<TR>]
? [<TD>Last name</TD>]
? [<TD><INPUT TYPE="text" NAME="namelast" SIZE="20"></TD>]
? [</TR>]
? [<TR>]
? [<TD>Address</TD>]
? [<TD><INPUT TYPE="text" NAME="address" SIZE="20"></TD>]
? [</TR>]
? [<TR>]
? [<TD>City</TD>]
? [<TD><INPUT TYPE="text" NAME="city" SIZE="20"></TD>]
? [</TR>]
? [<TR>]
? [<TD>State</TD>]
? [<TD><INPUT TYPE="text" NAME="state" SIZE="20"></TD>]
? [</TR>]
? [</TABLE>]
? [<P>]
? [Pen <INPUT TYPE="radio" NAME="supply" VALUE="pen">]
? [Pencil <INPUT TYPE="radio" NAME="supply" VALUE="pencil">]
? [Pad <INPUT TYPE="radio" NAME="supply" VALUE="pad">]
? [Pen <INPUT TYPE="radio" NAME="supply" VALUE="notebook">]
? [</P>]
? [Breakfast <INPUT TYPE="checkbox" NAME="breakfast" VALUE="1">]
? [Lunch <INPUT TYPE="checkbox" NAME="lunch" VALUE="1">]
? [Dinner <INPUT TYPE="checkbox" NAME="dinner" VALUE="1">]
? [<P>]
? [<TEXTAREA ROWS="5" COLS="40"></TEXTAREA>]
? [</P>]
? [</FORM>]
? []
? [</BODY>]
? [</HTML>]
62 © 1998-2000, PlugSys International LLC Migrating to the Web

4. Integrate All MaxWeb Code

5. Register Function and Procedure Prototypes

6. Compile MaxWeb Code

7. Test By Running Your Code With the MaxWeb
Simulator

8. Install Code On Web Server

9. Embed Call to Invoke MaxWeb Within HTML Form

10. Run Your MaxWeb Application
Migrating to the Web © 1998-2000, PlugSys International LLC 63

Simple MaxWeb Application
* --
* Inserts email address in database MAILING.DBF
* (Called from within an HTML form - for use with MaxWEB)
*
* Input: EMAIL
*
* Output: Send a page informing the operation status
*
*
* Copyright (C) PlugSys International, 1999. All rights Reserved
* --

* Max offers // as an additional comment signal
Function SUBSCRIBE(Email)
Private ResultPage ,;

MWBody ,;
MWLink

// Check if Email is valid
// ! is equivalent to .not.

if ! IsValidEmail(Email)
// := is equivalent to = as assignment operator
MWBody := "Please provide a valid email address."
SendPage("mwpages\Standard.html")
return .T.

end

// Check if email address is already in the database
use "us\MAILING" index "us\INDMAIL" shared
seek lower(M->Email)
64 © 1998-2000, PlugSys International LLC Migrating to the Web

if Found()
MWBody := {{ Thanks for your submission.

(MaxWeb found your email address already
in the PlugSys International mailing list.)

}}
else

append blank
replace Mailing->EMAIL with M.Email, ;

Mailing->DATE with Date(), ;
Mailing->TIME with Time()

* Note the {{ and }} as the start and termination characters
* as a convenience for long strings

MWBody := {{ Thank you for joining the PlugSys
International mailing list.

MaxWeb successfully added you to our database.

}}
endif

MWBody += {{

By pressing the <I>Submit</I> button you have
executed an Xbase routine that stores your email
address into a DBF file.

}}

MWLink := {{
Inspect the MaxWeb source code behind
this mailing list applet.

}}
SendPage("mwpages\Standard-MW.html")
close MAILING
return .T. // Terminate: do not leave app running
Migrating to the Web © 1998-2000, PlugSys International LLC 65

* --
* This procedure shows this PRG module in HTML format
*
* Input: none
*
* Output: Send a page containing this PRG module
*
*
* Copyright (C) PlugSys International, 1999. All rights Reserved
* --

Function SHOWCODE()
Private nHandle, ;

nFileSize, ;
MWCode

nHandle = fopen(_MWPath+"\webprocs\subscrib.prg")

if nHandle == -1
MWCode = "Error loading source file"

else
nFileSize = fseek(nHandle, 0, 2) // To the end of file: file size
fseek(nHandle, 0) // Point file handle to start of file
if fread(nHandle, @MWCode, nFileSize) != nFileSize

MWCode = "Error loading source file"
else

MWCode = TranslateHTML(MWCode)
end
fclose(nHandle)

endif

SendPage("mwpages\Standard-ShowCode.html")
return .T. // Terminate: do not leave app running
66 © 1998-2000, PlugSys International LLC Migrating to the Web

Clipper to Max Migration Guide
About This Document
Why Max is the Evolution of Xbase
Implementation Differences

Functions: Dummy Arguments
File Formats*
Preprocessor Directives
Preprocessor: #command, #translate
Indexes

Filename Extension
Data Type for Index Key Expressions
Using The SEEK Command Against A Non-Character Field
Unique Indexes Provide Integrity Protection

Conflicting User Defined Names
Functions: User Defined Conflicting With Internal
Variables: Conflicting With Reserved Words

Multidimensional Arrays
Expanded Color Handling
FILE()
Compiling A Tree of Files
Miscellaneous

Line continuation when calling user defined functions
SET KEY <keyname> TO <function(withParameter)>
Using achoice() With lastkey()
Status Codes: achoice(), dbedit(), memoedit()

Extended Features
Using Extended Mode

How to Invoke Extended Mode
Invoking Extended Mode When Compiling
Invoking Extended Mode Within Your Source Code

Compiler Directives
Function Prototype Directive

Default SET Values
Literals vs. Quoted Strings vs. Variables
Millenium Solution (Year 2000)
Expanded Alias References
Operators

Assignment Operators:
© 1998-2000, PlugSys International LLC 67

Universal Concatenation Operator
Increment and Decrement Operators

Functions
Function Improvements

Code Blocks
Added Index Features

Idle State Handling: idleb(), idlep(), idlem()
Multidimensional Arrays
Variable Scoping
Field/Variable Precedence (SET PRECEDENCE)
Integrated Debugger
Added Commands & Functions

UNIX Support
IBM Mainframe Support
Database Handling
Color Handling
Numeric Handling
String Handling
Multiuser/Network Support
Branching Logic
Error Handling
File Handling
Keyboard Handling
Array Handling
User Interface Handling
Date/Time Handling

Unimplemented Features
Preprocessor: #command, #translate
Pseudoclasses
Don’t Abbreviate Commands

Clipper 5.x and Max
Introduction

Fox Products and Max
Introduction
Commands
68 © 1998-2000, PlugSys International LLC

BROWSE
CREATE STRUCTURE
SCATTER and GATHER

Functions
Tips

Don’t Abbreviate Commands
How To Structure Your Source Code

Compiling And Running The Application
Creating DBF Files

Max Additional Features
Introduction
Long Names
Intrinsic (In-Line) Parameters
Scoping: LOCAL and STATIC

Lifetime and Visibility
Code Delimiters

Block Enclosure Characters
String Enclosure Operator
Line-splitting Array Initializer
C-style remark operator

Compiler Controls
Warnings
Platform Appropriateness Checking
Preprocessor Directives
Inline compiler directives

Inline Operators
Compound-assignment operators
Unary increment/decrement operators
Inline Assignment

Codeblocks
Arrays

Multidimensional Arrays
Array Declaration

Pointer Operations
Universal Concatenator
Quoted String Expressions: Alternative to Macros and Literals
© 1998-2000, PlugSys International LLC 69

KEY clause regenerates indexes

Migrating to the Web
Introduction

1. Isolate All User Interface Code and Forms
2. Transform Xbase User Interface to HTML

Typical Xbase Form
HTML Equivalent Form

3. Turn HTML Into Xbase Print Statements
4. Integrate All MaxWeb Code
5. Register Function and Procedure Prototypes
6. Compile MaxWeb Code
7. Test By Running Your Code With the MaxWeb Simulator
8. Install Code On Web Server
9. Embed Call to Invoke MaxWeb Within HTML Form
10. Run Your MaxWeb Application
Simple MaxWeb Application
70 © 1998-2000, PlugSys International LLC

Clipper to Max Migration Guide
About This Document
Why Max is the Evolution of Xbase
Implementation Differences

Functions: Dummy Arguments
File Formats*
Preprocessor Directives
Preprocessor: #command, #translate
Indexes

Filename Extension
Data Type for Index Key Expressions
Using The SEEK Command Against A Non-Character Field
Unique Indexes Provide Integrity Protection

Conflicting User Defined Names
Functions: User Defined Conflicting With Internal
Variables: Conflicting With Reserved Words

Multidimensional Arrays
Expanded Color Handling
FILE()
Compiling A Tree of Files
Miscellaneous

Line continuation when calling user defined functions
SET KEY <keyname> TO <function(withParameter)>
Using achoice() With lastkey()
Status Codes: achoice(), dbedit(), memoedit()

Extended Features
Using Extended Mode

How to Invoke Extended Mode
Invoking Extended Mode When Compiling
Invoking Extended Mode Within Your Source Code

Compiler Directives
Function Prototype Directive

Default SET Values
Literals vs. Quoted Strings vs. Variables
Millenium Solution (Year 2000)
Expanded Alias References
Operators

Assignment Operators:
© 1998-2000, PlugSys International LLC 71

Universal Concatenation Operator
Increment and Decrement Operators

Functions
Function Improvements

Code Blocks
Added Index Features

Idle State Handling: idleb(), idlep(), idlem()
Multidimensional Arrays
Variable Scoping
Field/Variable Precedence (SET PRECEDENCE)
Integrated Debugger
Added Commands & Functions

UNIX Support
IBM Mainframe Support
Database Handling
Color Handling
Numeric Handling
String Handling
Multiuser/Network Support
Branching Logic
Error Handling
File Handling
Keyboard Handling
Array Handling
User Interface Handling
Date/Time Handling

Unimplemented Features
Preprocessor: #command, #translate
Pseudoclasses
Don’t Abbreviate Commands

Clipper 5.x and Max
Introduction

Fox Products and Max
Introduction
Commands
72 © 1998-2000, PlugSys International LLC

BROWSE
CREATE STRUCTURE
SCATTER and GATHER

Functions
Tips

Don’t Abbreviate Commands
How To Structure Your Source Code

Compiling And Running The Application
Creating DBF Files

Max Additional Features
Introduction
Long Names
Intrinsic (In-Line) Parameters
Scoping: LOCAL and STATIC

Lifetime and Visibility
Code Delimiters

Block Enclosure Characters
String Enclosure Operator
Line-splitting Array Initializer
C-style remark operator

Compiler Controls
Warnings
Platform Appropriateness Checking
Preprocessor Directives
Inline compiler directives

Inline Operators
Compound-assignment operators
Unary increment/decrement operators
Inline Assignment

Codeblocks
Arrays

Multidimensional Arrays
Array Declaration

Pointer Operations
Universal Concatenator
Quoted String Expressions: Alternative to Macros and Literals
© 1998-2000, PlugSys International LLC 73

KEY clause regenerates indexes

Migrating to the Web
Introduction

1. Isolate All User Interface Code and Forms
2. Transform Xbase User Interface to HTML

Typical Xbase Form
HTML Equivalent Form

3. Turn HTML Into Xbase Print Statements
4. Integrate All MaxWeb Code
5. Register Function and Procedure Prototypes
6. Compile MaxWeb Code
7. Test By Running Your Code With the MaxWeb Simulator
8. Install Code On Web Server
9. Embed Call to Invoke MaxWeb Within HTML Form
10. Run Your MaxWeb Application
Simple MaxWeb Application
74 © 1998-2000, PlugSys International LLC

	Clipper to Max Migration Guide
	About This Document
	Why Max is the Evolution of Xbase
	Implementation Differences
	Functions: Dummy Arguments
	File Formats*
	Preprocessor Directives
	Preprocessor: #command, #translate
	Indexes
	Filename Extension
	Data Type for Index Key Expressions
	Using The SEEK Command Against A Non-Character Field
	Unique Indexes Provide Integrity Protection

	Conflicting User Defined Names
	Functions: User Defined Conflicting With Internal
	Variables: Conflicting With Reserved Words

	Multidimensional Arrays
	Expanded Color Handling
	FILE()
	Compiling A Tree of Files
	Miscellaneous
	Line continuation when calling user defined functions
	SET KEY <keyname> TO <function(withParameter)>
	Using achoice() With lastkey()
	Status Codes: achoice(), dbedit(), memoedit()

	Extended Features
	Using Extended Mode
	How to Invoke Extended Mode
	Invoking Extended Mode When Compiling
	Invoking Extended Mode Within Your Source Code

	Compiler Directives
	Function Prototype Directive

	Default SET Values
	Literals vs. Quoted Strings vs. Variables
	Millenium Solution (Year 2000)
	Expanded Alias References
	Operators
	Assignment Operators:
	Universal Concatenation Operator
	Increment and Decrement Operators

	Functions
	Function Improvements

	Code Blocks
	Added Index Features
	Idle State Handling: idleb(), idlep(), idlem()

	Multidimensional Arrays
	Variable Scoping
	Field/Variable Precedence (SET PRECEDENCE)
	Integrated Debugger
	Added Commands & Functions
	UNIX Support
	IBM Mainframe Support
	Database Handling
	Color Handling
	Numeric Handling
	String Handling
	Multiuser/Network Support
	Branching Logic
	Error Handling
	File Handling
	Keyboard Handling
	Array Handling
	User Interface Handling
	Date/Time Handling

	Unimplemented Features
	Preprocessor: #command, #translate
	Pseudoclasses
	Don’t Abbreviate Commands

	Clipper 5.x and Max
	Introduction

	Fox Products and Max
	Introduction
	Commands
	BROWSE
	CREATE STRUCTURE
	SCATTER and GATHER

	Functions
	Tips
	Don’t Abbreviate Commands
	How To Structure Your Source Code
	Compiling And Running The Application

	Creating DBF Files

	Max Additional Features
	Introduction
	Long Names
	Intrinsic (In-Line) Parameters
	Scoping: LOCAL and STATIC
	Lifetime and Visibility

	Code Delimiters
	Block Enclosure Characters
	String Enclosure Operator
	Line-splitting Array Initializer
	C-style remark operator

	Compiler Controls
	Warnings
	Platform Appropriateness Checking
	Preprocessor Directives
	Inline compiler directives

	Inline Operators
	Compound-assignment operators
	Unary increment/decrement operators
	Inline Assignment

	Codeblocks
	Arrays
	Multidimensional Arrays
	Array Declaration

	Pointer Operations
	Universal Concatenator
	Quoted String Expressions: Alternative to Macros and Literals
	KEY clause regenerates indexes

	Migrating to the Web
	Introduction
	1. Isolate All User Interface Code and Forms
	2. Transform Xbase User Interface to HTML
	Typical Xbase Form
	HTML Equivalent Form

	3. Turn HTML Into Xbase Print Statements
	4. Integrate All MaxWeb Code
	5. Register Function and Procedure Prototypes
	6. Compile MaxWeb Code
	7. Test By Running Your Code With the MaxWeb Simulator
	8. Install Code On Web Server
	9. Embed Call to Invoke MaxWeb Within HTML Form
	10. Run Your MaxWeb Application
	Simple MaxWeb Application

